Suppr超能文献

恒化器中延迟生长响应诱导的瞬态振荡。

Transient oscillations induced by delayed growth response in the chemostat.

作者信息

Xia Huaxing, Wolkowicz Gail S K, Wang Lin

机构信息

Department of Mathematics and Statistics, McMaster University, Hamilton, Ontario, L8S 4K1, Canada.

出版信息

J Math Biol. 2005 May;50(5):489-530. doi: 10.1007/s00285-004-0311-5. Epub 2005 Mar 15.

Abstract

In this paper, in order to try to account for the transient oscillations observed in chemostat experiments, we consider a model of single species growth in a chemostat that involves delayed growth response. The time delay models the lag involved in the nutrient conversion process. Both monotone response functions and nonmonotone response functions are considered. The nonmonotone response function models the inhibitory effects of growth response of certain nutrients when concentrations are too high. By applying local and global Hopf bifurcation theorems, we prove that the model has unstable periodic solutions that bifurcate from unstable nonnegative equilibria as the parameter measuring the delay passes through certain critical values and that these local periodic solutions can persist, even if the delay parameter moves far from the critical (local) bifurcation values. When there are two positive equilibria, then positive periodic solutions can exist. When there is a unique positive equilibrium, the model does not have positive periodic oscillations and the unique positive equilibrium is globally asymptotically stable. However, the model can have periodic solutions that change sign. Although these solutions are not biologically meaningful, provided the initial data starts close enough to the unstable manifold of one of these periodic solutions they may still help to account for the transient oscillations that have been frequently observed in chemostat experiments. Numerical simulations are provided to illustrate that the model has varying degrees of transient oscillatory behaviour that can be controlled by the choice of the initial data.

摘要

在本文中,为了尝试解释在恒化器实验中观察到的瞬态振荡,我们考虑一个恒化器中单一物种生长的模型,该模型涉及延迟生长响应。时间延迟模拟了营养物转化过程中所涉及的滞后现象。我们考虑了单调响应函数和非单调响应函数。非单调响应函数模拟了某些营养物浓度过高时对生长响应的抑制作用。通过应用局部和全局霍普夫分岔定理,我们证明该模型具有不稳定的周期解,当测量延迟的参数通过某些临界值时,这些周期解从不稳定的非负平衡点分岔出来,并且即使延迟参数远离临界(局部)分岔值,这些局部周期解仍能持续存在。当存在两个正平衡点时,则可能存在正周期解。当存在唯一的正平衡点时,该模型不存在正周期振荡,且唯一的正平衡点是全局渐近稳定的。然而,该模型可能具有改变符号的周期解。尽管这些解在生物学上没有意义,但只要初始数据足够接近这些周期解之一的不稳定流形开始,它们仍可能有助于解释在恒化器实验中经常观察到的瞬态振荡。提供了数值模拟以说明该模型具有不同程度的瞬态振荡行为,这些行为可以通过初始数据的选择来控制。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验