Pollmann Katrin, Wray Victor, Pieper Dietmar H
Bereich Mikrobiologie, AG Biodegradation, Gesellschaft für Biotechnologische Forschung mbH, Mascheroder Weg 1, D-38124 Braunschweig, Germany.
J Bacteriol. 2005 Apr;187(7):2332-40. doi: 10.1128/JB.187.7.2332-2340.2005.
To elucidate possible reasons for the recalcitrance of 2-chlorotoluene, the metabolism of chloromethylcatechols, formed after dioxygenation and dehydrogenation by Ralstonia sp. strain PS12 tetrachlorobenzene dioxygenase and chlorobenzene dihydrodiol dehydrogenase, was monitored using chlorocatechol dioxygenases and chloromuconate cycloisomerases partly purified from Ralstonia sp. strain PS12 and Wautersia eutropha JMP134. Two chloromethylcatechols, 3-chloro-4-methylcatechol and 4-chloro-3-methylcatechol, were formed from 2-chlorotoluene. 3-Chloro-4-methylcatechol was transformed into 5-chloro-4-methylmuconolactone and 2-chloro-3-methylmuconolactone. For mechanistic reasons neither of these cycloisomerization products can be dehalogenated by chloromuconate cycloisomerases, with the result that 3-chloro-4-methylcatechol cannot be mineralized by reaction sequences related to catechol ortho-cleavage pathways known thus far. 4-Chloro-3-methylcatechol is only poorly dehalogenated during enzymatic processing due to the kinetic properties of the chloromuconate cycloisomerases. Thus, degradation of 2-chlorotoluene via a dioxygenolytic pathway is evidently problematic. In contrast, 5-chloro-3-methylcatechol, the major dioxygenation product formed from 3-chlorotoluene, is subject to quantitative dehalogenation after successive transformation by chlorocatechol 1,2-dioxygenase and chloromuconate cycloisomerase, resulting in the formation of 2-methyldienelactone. 3-Chloro-5-methylcatechol is transformed to 2-chloro-4-methylmuconolactone.
为阐明2-氯甲苯难降解的可能原因,利用从罗尔斯通氏菌属PS12菌株和嗜麦芽窄食单胞菌JMP134菌株部分纯化得到的氯儿茶酚双加氧酶和氯粘康酸环异构酶,监测了由罗尔斯通氏菌属PS12菌株的四氯苯双加氧酶和氯苯二氢二醇脱氢酶进行双加氧和脱氢反应后形成的氯甲基儿茶酚的代谢情况。从2-氯甲苯中形成了两种氯甲基儿茶酚,即3-氯-4-甲基儿茶酚和4-氯-3-甲基儿茶酚。3-氯-4-甲基儿茶酚转化为5-氯-4-甲基粘康内酯和2-氯-3-甲基粘康内酯。出于机理原因,这些环异构化产物均不能被氯粘康酸环异构酶脱卤,结果是3-氯-4-甲基儿茶酚无法通过迄今为止已知的与儿茶酚邻位裂解途径相关的反应序列进行矿化。由于氯粘康酸环异构酶的动力学特性,4-氯-3-甲基儿茶酚在酶促处理过程中仅能少量脱卤。因此,通过双加氧分解途径降解2-氯甲苯显然存在问题。相比之下,3-氯甲苯形成的主要双加氧产物5-氯-3-甲基儿茶酚,在经过氯儿茶酚1,2-双加氧酶和氯粘康酸环异构酶的连续转化后会进行定量脱卤,生成2-甲基二烯内酯。3-氯-5-甲基儿茶酚转化为2-氯-4-甲基粘康内酯。