Chen Baowei, Mayer M Uljana, Squier Thomas C
Cell Biology and Biochemistry Group, Biological Sciences Division, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352, USA.
Biochemistry. 2005 Mar 29;44(12):4737-47. doi: 10.1021/bi0474113.
Stabilization of the plasma membrane Ca-ATPase (PMCA) in an inactive conformation upon oxidation of multiple methionines in the calcium regulatory protein calmodulin (CaM) is part of an adaptive cellular response to minimize ATP utilization and the generation of reactive oxygen species (ROS) under conditions of oxidative stress. To differentiate oxidant-induced structural changes that selectively modify the amino-terminal domain of CaM from those that modulate the conformational coupling between the opposing domains, we have engineered a tetracysteine binding motif within helix A in the amino-terminal domain of calmodulin (CaM) that permits the selective and rigid attachment of the conformationally sensitive fluorescent probe 4',5'-bis(1,3,2-dithioarsolan-2-yl)fluorescein-(1,2-ethanedithiol)(2) (FlAsH-EDT(2)). The position of the FlAsH label in the amino-terminal domain provides a signal for monitoring its binding to the CaM-binding sequence of the PMCA. Following methionine oxidation, there is an enhanced binding affinity between the amino-terminal domain and the CaM-binding sequence of the PMCA. To identify oxidant-induced structural changes, we used frequency domain fluorescence anisotropy measurements to assess the structural coupling between helix A and the amino- and carboxyl-terminal domains of CaM. Helix A undergoes large amplitude motions in apo-CaM; following calcium activation, helix A is immobilized as part of a conformational switch that couples the opposing domains of CaM to stabilize the high-affinity binding cleft associated with target protein binding. Methionine oxidation disrupts the structural coupling between opposing globular domains of CaM, without affecting the calcium-dependent immobilization of helix A associated with activation of the amino-terminal domain to promote high-affinity binding to target proteins. We suggest that this selective disruption of the structural linkage between the opposing globular domains of CaM relieves steric constraints associated with high-affinity target binding, permitting the formation of new contact interactions between the amino-terminal domain and the CaM-binding sequence that stabilizes the PMCA in an inhibited conformation.
钙调蛋白(CaM)中多个甲硫氨酸氧化后,质膜钙 - ATP酶(PMCA)稳定于无活性构象,这是细胞适应性反应的一部分,可在氧化应激条件下尽量减少ATP利用及活性氧(ROS)生成。为区分氧化剂诱导的选择性修饰CaM氨基末端结构域的结构变化与调节相对结构域间构象偶联的变化,我们在钙调蛋白(CaM)氨基末端结构域的A螺旋内设计了一个四半胱氨酸结合基序,可选择性且牢固地连接构象敏感荧光探针4',5'-双(1,3,2-二硫代砷杂环戊烷-2-基)荧光素-(1,2-乙二硫醇)(2)(FlAsH-EDT(2))。FlAsH标签在氨基末端结构域中的位置为监测其与PMCA的CaM结合序列的结合提供了信号。甲硫氨酸氧化后,氨基末端结构域与PMCA的CaM结合序列之间的结合亲和力增强。为识别氧化剂诱导的结构变化,我们使用频域荧光各向异性测量来评估A螺旋与CaM的氨基和羧基末端结构域之间的结构偶联。在无钙CaM中,A螺旋经历大幅度运动;钙激活后,A螺旋作为构象转换的一部分被固定,该构象转换使CaM的相对结构域偶联,以稳定与靶蛋白结合相关的高亲和力结合裂隙。甲硫氨酸氧化破坏了CaM相对球状结构域之间的结构偶联,但不影响与氨基末端结构域激活相关的A螺旋钙依赖性固定,从而促进与靶蛋白的高亲和力结合。我们认为,CaM相对球状结构域之间结构连接的这种选择性破坏缓解了与高亲和力靶标结合相关的空间位阻,使氨基末端结构域与CaM结合序列之间形成新的接触相互作用,从而将PMCA稳定于抑制构象。