Chen Baowei, Markillie Lye Meng, Xiong Yijia, Mayer M Uljana, Squier Thomas C
Cell Biology and Biochemistry Group, Biological Sciences Division, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352, USA.
Biochemistry. 2007 Dec 11;46(49):14153-61. doi: 10.1021/bi701151t. Epub 2007 Nov 13.
Methionine sulfoxide reductase enzymes MsrA and MsrB have complementary stereospecificities that reduce the S and R stereoisomers of methionine sulfoxide (MetSO), respectively, and together function as critical antioxidant enzymes. In some pathogenic and metal-reducing bacteria, these genes are fused to form a bifunctional methionine sulfoxide reductase (i.e., MsrBA) enzyme. To investigate how gene fusion affects the substrate specificity and catalytic activities of Msr, we have cloned and expressed the MsrBA enzyme from Shewanella oneidensis, a metal-reducing bacterium and fish pathogen. For comparison, we also cloned and expressed the wild-type MsrA enzyme from S. oneidensis and a genetically engineered MsrB protein. MsrBA is able to completely reduce (i.e., repair) MetSO in the calcium regulatory protein calmodulin (CaM), while only partial repair is observed using both MsrA and MsrB enzymes together at 25 degrees C. A restoration of the normal protein fold is observed co-incident with the repair of MetSO in oxidized CaM (CaMox by MsrBA, as monitored by time-dependent increases in the anisotropy associated with the rigidly bound multiuse affinity probe 4',5'-bis(1,3,2-dithioarsolan-2-yl)fluorescein (FlAsH). Underlying the efficient repair of MetSO in CaMox is the coordinate activity of the two catalytic domains in the MsrBA fusion protein, which results in a 1 order of magnitude rate enhancement in comparison to those of the individual MsrA or MsrB enzyme alone. The coordinate binding of both domains of MsrBA permits the full repair of all MetSO in CaMox. The common expression of Msr fusion proteins in bacterial pathogens is consistent with an important role for this enzyme activity in the maintenance of protein function necessary for bacterial survival under highly oxidizing conditions associated with pathogenesis or bioremediation.
甲硫氨酸亚砜还原酶MsrA和MsrB具有互补的立体特异性,分别还原甲硫氨酸亚砜(MetSO)的S型和R型立体异构体,共同作为关键的抗氧化酶发挥作用。在一些致病细菌和金属还原细菌中,这些基因融合形成双功能甲硫氨酸亚砜还原酶(即MsrBA)。为了研究基因融合如何影响Msr的底物特异性和催化活性,我们克隆并表达了来自金属还原细菌兼鱼类病原体——希瓦氏菌的MsrBA酶。作为对照,我们还克隆并表达了来自希瓦氏菌的野生型MsrA酶和一种基因工程改造的MsrB蛋白。MsrBA能够完全还原(即修复)钙调节蛋白钙调蛋白(CaM)中的MetSO,而在25℃下同时使用MsrA和MsrB酶时仅观察到部分修复。在氧化型CaM(CaMox)中,随着MetSO的修复,观察到正常蛋白质折叠的恢复,这是通过与紧密结合的多用途亲和探针4',5'-双(1,3,2-二硫代砷杂环戊烷-2-基)荧光素(FlAsH)相关的各向异性随时间增加来监测的,MsrBA对CaMox中MetSO的高效修复的基础是MsrBA融合蛋白中两个催化结构域的协同活性,与单独的MsrA或MsrB酶相比,这导致反应速率提高了1个数量级。MsrBA两个结构域的协同结合使得CaMox中的所有MetSO都能得到完全修复。Msr融合蛋白在细菌病原体中的普遍表达与这种酶活性在维持细菌在与致病或生物修复相关的高氧化条件下生存所必需的蛋白质功能方面的重要作用是一致的。