Trbovic Nikola, Dancea Felician, Langer Thomas, Günther Ulrich
Center for Biomolecular Magnetic Resonance (BMRZ), Institute of Biophysical Chemistry, J.W. Goethe University, Marie-Curie-Str. 9, 60439 Frankfurt, Germany.
J Magn Reson. 2005 Apr;173(2):280-7. doi: 10.1016/j.jmr.2004.11.032.
Principal component analysis (PCA) is a commonly used algorithm in multivariate analysis of NMR screening data. PCA substantially reduces the complexity of data in which a large number of variables are interrelated. For series of NMR spectra obtained for ligand binding, it is commonly used to visually group spectra with a similar response to ligand binding. A series of filters are applied to the experimental data to obtain suitable descriptors for PCA which optimize computational efficiency and minimize the weight of small chemical shift variations. The most common filter is bucketing where adjacent points are summed to a bucket. To overcome some inherent disadvantages of the bucketing procedure we have explored the effect of wavelet de-noising on multivariate analysis, using a series of HSQC spectra of proteins with different ligands present. The combination of wavelet de-noising and PCA is most efficient when PCA is applied to wavelet coefficients. This new algorithm yields good clustering and can be applied to series of one- or two-dimensional spectra.
主成分分析(PCA)是核磁共振筛选数据多变量分析中常用的算法。PCA 显著降低了大量变量相互关联的数据的复杂性。对于为配体结合获得的一系列核磁共振谱,它通常用于直观地将对配体结合有相似响应的谱进行分组。对实验数据应用一系列滤波器以获得适用于 PCA 的描述符,从而优化计算效率并最小化小化学位移变化的权重。最常见的滤波器是分桶,即将相邻点求和到一个桶中。为了克服分桶过程的一些固有缺点,我们使用存在不同配体的蛋白质的一系列 HSQC 谱,探索了小波去噪对多变量分析的影响。当将 PCA 应用于小波系数时,小波去噪和 PCA 的组合效率最高。这种新算法产生良好的聚类效果,可应用于一维或二维谱系列。