Jung Yoon Young, Park Youngja, Jones Dean P, Ziegler Thomas R, Vidakovic Brani
Ewha Womans University.
J Data Sci. 2010 Jan 1;8(1):1-19.
High resolution of NMR spectroscopic data of biosamples are a rich source of information on the metabolic response to physiological variation or pathological events. There are many advantages of NMR techniques such as the sample preparation is fast, simple and non-invasive. Statistical analysis of NMR spectra usually focuses on differential expression of large resonance intensity corresponding to abundant metabolites and involves several data preprocessing steps. In this paper we estimate functional components of spectra and test their significance using multiscale techniques. We also explore scaling in NMR spectra and use the systematic variability of scaling descriptors to predict the level of cysteine, an important precursor of glutathione, a control antioxidant in human body. This is motivated by high cost (in time and resources) of traditional methods for assessing cysteine level by high performance liquid chromatograph (HPLC).
生物样品的核磁共振光谱数据的高分辨率是有关对生理变化或病理事件代谢反应的丰富信息来源。核磁共振技术有许多优点,例如样品制备快速、简单且非侵入性。核磁共振光谱的统计分析通常侧重于与丰富代谢物相对应的大共振强度的差异表达,并且涉及几个数据预处理步骤。在本文中,我们使用多尺度技术估计光谱的功能成分并测试其显著性。我们还探索了核磁共振光谱中的标度,并利用标度描述符的系统变异性来预测半胱氨酸的水平,半胱氨酸是谷胱甘肽的重要前体,谷胱甘肽是人体中的一种控制抗氧化剂。这是由通过高效液相色谱法(HPLC)评估半胱氨酸水平的传统方法成本高昂(在时间和资源方面)所推动的。