Narayanan Ramamurthi, Gunturi Sitarama B
Bioinformatics Division, Advanced Technology Center, Tata Consultancy Services, 1, Software Units Layout, Madhapur, Hyderabad 500 081, India.
Bioorg Med Chem. 2005 Apr 15;13(8):3017-28. doi: 10.1016/j.bmc.2005.01.061.
Quantitative Structure-Property Relationship models (QSPR) based on in vivo blood-brain permeation data (logBB) of 88 diverse compounds, 324 descriptors and a systematic variable selection method, namely 'Variable Selection and Modeling method based on the prediction (VSMP)', are reported. Of all the models developed using VSMP, the best three-descriptors model is based on Atomic type E-state index (SsssN), AlogP98 and Van der Waal's surface area (r=0.8425, q=0.8239, F=68.49 and SE=0.4165); the best four-descriptors model is based on Kappa shape index of order 1, Atomic type E-state index (SsssN), Atomic level based AI topological descriptor (AIssssC) and AlogP98 (r=0.8638, q=0.8472, F=60.982 and SE=0.3919). The performance of the models on three test sets taken from the literature is illustrated and compared with the results from other reported computational approaches. Test set III constitutes 91 compounds from the literature with known qualitative BBB indication and is used for virtual screening studies. The success rate of the reported models is 82% in the case of BBB+ compounds and a similar success rate is observed with BBB- compounds. Finally, as the models reported herein are based on computed properties, they appear as a valuable tool in virtual screening, where selection and prioritization of candidates is required.
报道了基于88种不同化合物的体内血脑渗透数据(logBB)、324个描述符以及一种系统变量选择方法(即基于预测的变量选择与建模方法,VSMP)构建的定量结构-性质关系模型(QSPR)。在使用VSMP开发的所有模型中,最佳的三描述符模型基于原子类型E态指数(SsssN)、AlogP98和范德华表面积(r = 0.8425,q = 0.8239,F = 68.49,SE = 0.4165);最佳的四描述符模型基于一阶卡帕形状指数、原子类型E态指数(SsssN)、基于原子水平的AI拓扑描述符(AIssssC)和AlogP98(r = 0.8638,q = 0.8472,F = 60.982,SE = 0.3919)。阐述了这些模型在从文献中选取的三个测试集上的性能,并与其他已报道的计算方法的结果进行了比较。测试集III由文献中的91种具有已知定性血脑屏障指示的化合物组成,用于虚拟筛选研究。对于血脑屏障阳性化合物,所报道模型的成功率为82%,血脑屏障阴性化合物的成功率与之相似。最后,由于本文报道的模型基于计算性质,它们在需要对候选物进行选择和排序的虚拟筛选中似乎是一种有价值的工具。