Suppr超能文献

计算机辅助药物代谢动力学(ADME)建模2:使用蚁群系统预测人血清白蛋白结合亲和力的计算模型

In silico ADME modelling 2: computational models to predict human serum albumin binding affinity using ant colony systems.

作者信息

Gunturi Sitarama B, Narayanan Ramamurthi, Khandelwal Akash

机构信息

Life Sciences R&D Division, Advanced Technology Centre, Tata Consultancy Services Limited, # 1, Software Units Layout, Madhapur, Hyderabad 500 081, India.

出版信息

Bioorg Med Chem. 2006 Jun 15;14(12):4118-29. doi: 10.1016/j.bmc.2006.02.008. Epub 2006 Feb 28.

Abstract

Modelling of in vitro human serum albumin (HSA) binding data of 94 diverse drugs and drug-like compounds is performed to develop global predictive models that are applicable to the whole medicinal chemistry space. For this aim, ant colony systems, a stochastic method along with multiple linear regression (MLR), is employed to exhaustively search and select multivariate linear equations, from a pool of 327 molecular descriptors. This methodology helped us to derive optimal quantitative structure-property relationship (QSPR) models based on five and six descriptors with excellent predictive power. The best five-descriptor model is based on Kier and Hall valence connectivity index--Order 5 (path), Auto-correlation descriptor (Broto-Moreau) weighted by atomic masses--Order 4, Auto-correlation descriptor (Broto-Moreau) weighted by atomic polarizabilities--Order 5, AlogP98, SklogS (calculated buffer water solubility) [R=0.8942, Q=0.86790, F=62.24 and SE=0.2626]; the best six-variable model is based on Kier and Hall valence connectivity index of Order 3 (cluster), Auto-correlation descriptor (Broto-Moreau) weighted by atomic masses--Order 4, Auto-correlation descriptor (Broto-Moreau) weighted by atomic polarizabilities--Order 5, Atomic-Level-Based AI topological descriptors--AIdsCH, AlogP98, SklogS (calculated buffer water solubility) [R=0.9128, Q=0.89220, F=64.09 and SE=0.2411]. From the analysis of the physical meaning of the selected descriptors, it is inferred that the binding affinity of small organic compounds to human serum albumin is principally dependent on the following fundamental properties: (1) hydrophobic interactions, (2) solubility, (3) size and (4) shape. Finally, as the models reported herein are based on computed properties, they appear to be a valuable tool in virtual screening, where selection and prioritisation of candidates is required.

摘要

对94种不同药物和类药物化合物的体外人血清白蛋白(HSA)结合数据进行建模,以开发适用于整个药物化学领域的全局预测模型。为此,采用蚁群系统(一种随机方法)以及多元线性回归(MLR),从327个分子描述符库中详尽地搜索和选择多元线性方程。这种方法帮助我们基于五个和六个描述符推导具有出色预测能力的最优定量构效关系(QSPR)模型。最佳的五描述符模型基于基尔和霍尔价连接性指数 - 5阶(路径)、按原子质量加权的自相关描述符(布罗托 - 莫罗) - 4阶、按原子极化率加权的自相关描述符(布罗托 - 莫罗) - 5阶、AlogP98、SklogS(计算的缓冲液水溶性)[R = 0.8942,Q = 0.86790,F = 62.24,SE = 0.2626];最佳的六变量模型基于3阶(簇)的基尔和霍尔价连接性指数、按原子质量加权的自相关描述符(布罗托 - 莫罗) - 4阶、按原子极化率加权的自相关描述符(布罗托 - 莫罗) - 5阶、基于原子水平的人工智能拓扑描述符 - AIdsCH、AlogP98、SklogS(计算的缓冲液水溶性)[R = 0.9128,Q = 0.89220,F = 64.09,SE = 0.2411]。通过对所选描述符物理意义的分析,可以推断小有机化合物与人血清白蛋白的结合亲和力主要取决于以下基本性质:(1)疏水相互作用,(2)溶解度,(3)大小和(4)形状。最后,由于本文报道的模型基于计算性质,它们似乎是虚拟筛选中的一种有价值的工具,在虚拟筛选中需要对候选物进行选择和排序。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验