Konosonoks Armands, Wright P John, Tsao Meng-Lin, Pika Jana, Novak Kevin, Mandel Sarah M, Bauer Jeanette A Krause, Bohne Cornelia, Gudmundsdóttir Anna D
Department of Chemistry, University of Cincinnati, Ohio 45221-0172, USA.
J Org Chem. 2005 Apr 1;70(7):2763-70. doi: 10.1021/jo048055x.
[reaction: see text] Photolysis of 3 in argon-saturated 2-propanol led to formation of 5 via intermolecular H-atom abstraction followed by lactonization. Irradiation of 4 in 2-propanol gave compounds 6 and 7 that also come from intermolecular H-atom abstraction. In contrast, photolysis of an oxygen-saturated solution of 3 in 2-propanol yields products 8, 9, and 10, which were all formed from intramolecular H-atom abstraction and trapping of the corresponding biradical with oxygen. Laser flash photolysis of 3 in methanol showed formation of biradical 3BR (lambda(max) 330 nm, and tau = 50 ns) via intramolecular H-atom abstraction as the main photoreactivity of 3. Biradical 3BR decayed into photoenols 3Z and 3E (lambda(max) 390 nm, tau = 6.5 micros and tau = 162 micros, respectively). In comparison, laser flash photolysis of 4 yielded photoenols 4Z and 4E (lambda(max) 390 nm, tau = 15 micros and tau = 3.6 ms, respectively). Thus photoenol 3E is unusually short-lived, and therefore it does not undergo the intramolecular lactonization as we have observed for the analogous photoenol 1E. Photoenol 3Z decays back to 3 via an intramolecular 1,5-H shift, whereas photoenol 3E reforms 3 efficiently via the solvent with the aid of the ortho ester group. The intramolecular lactonization of photoenols 1E and 3E must be a slow process, presumably because the photoenols are rigid and the hydroxyl group is inhibited, by intramolecular hydrogen bonding, from acquiring the correct geometry for lactonization. Thus only photoenols that are resistant to reformation of their ketone via the solvent are long-lived enough to undergo lactonization and release the alcohol moiety.
[反应:见正文] 在氩气饱和的2-丙醇中对3进行光解,通过分子间氢原子夺取随后内酯化生成5。在2-丙醇中对4进行辐照得到化合物6和7,它们同样来自分子间氢原子夺取。相比之下,在2-丙醇中对3的氧饱和溶液进行光解产生产物8、9和10,这些产物均由分子内氢原子夺取以及相应双自由基与氧的捕获形成。在甲醇中对3进行激光闪光光解显示,通过分子内氢原子夺取形成双自由基3BR(最大吸收波长λ(max)为330 nm,寿命τ = 50 ns),这是3的主要光反应活性。双自由基3BR衰变为光烯醇3Z和3E(最大吸收波长λ(max)为390 nm,寿命τ分别为6.5微秒和162微秒)。相比之下,对4进行激光闪光光解产生光烯醇4Z和4E(最大吸收波长λ(max)为390 nm,寿命τ分别为15微秒和3.6毫秒)。因此光烯醇3E寿命异常短,所以它不像我们观察到的类似光烯醇1E那样发生分子内内酯化。光烯醇3Z通过分子内1,5-氢迁移回3,而光烯醇3E借助原酸酯基团通过溶剂有效地重新形成3。光烯醇1E和3E的分子内内酯化必定是一个缓慢的过程,大概是因为光烯醇结构刚性,且羟基通过分子内氢键作用被抑制,无法获得内酯化所需的正确几何构型。因此只有那些通过溶剂不易重新形成酮的光烯醇寿命足够长,能够发生内酯化并释放醇部分。