Suppr超能文献

Bisphosphonates stimulate an endogenous nonselective cation channel in Xenopus oocytes: potential mechanism of action.

作者信息

Shao Weijian, Orlando Roy C, Awayda Mouhamed S

机构信息

Department of Physiology, Tulane University Health Sciences Center, 1430 Tulane Ave., New Orleans, LA 70112, USA.

出版信息

Am J Physiol Cell Physiol. 2005 Aug;289(2):C248-56. doi: 10.1152/ajpcell.00393.2004. Epub 2005 Mar 23.

Abstract

The mechanisms of action of bisphosphonates (BPs) have been poorly determined. Besides their actions on osteoclasts, these agents exhibit gastrointestinal complications. They have also recently been described as affecting various preparations that express an epithelial Na(+) channel (ENaC). To understand the effects of BP on ion channels and the ENaC in particular, we used the Xenopus oocyte expression system. Alendronate, and similarly risedronate, two aminobisphosphonates, caused a large stimulation of an endogenous nonselective cation conductance (NSCC). This stimulation averaged 63 +/- 12 muS (n = 18) 60 min after the addition of 2 mM alendronate. The effects on the endogenous NSCC were blocked by extracellular acidification to pH 6.4. On the other hand, alendronate caused a small inhibition of ENaC conductance at pH 7.4 and 6.4, but the effects at pH 6.4 were more readily observed in the absence of changes of the endogenous conductance. The effects on membrane capacitance were also markedly different, with a clear decrease at pH 6.4 and no consistent changes at pH 7.4. The effects on the endogenous channel were further augmented by genistein and were inhibited by a tyrosine phosphatase inhibitor, indicating the involvement of the tyrosine kinase pathway. Stimulation of NSCC with BP is expected to cause membrane depolarization and may explain, in part, its mechanisms of action in inhibiting osteoclasts.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验