Suppr超能文献

福尔曼离散莫尔斯理论在拓扑可视化与网格压缩中的应用。

Applications of Forman's discrete Morse theory to topology visualization and mesh compression.

作者信息

Lewiner Thomas, Lopes Hélio, Tavares Geovan

机构信息

Laboratório MatMídia, Departamento de Matemática, Pontifícia Universidade Católica do Rio de Janeiro, Rua Marques de São Vicente 225, Gávea, Rio de Janeiro, RJ, Brasil.

出版信息

IEEE Trans Vis Comput Graph. 2004 Sep-Oct;10(5):499-508. doi: 10.1109/TVCG.2004.18.

Abstract

Morse theory is a powerful tool for investigating the topology of smooth manifolds. It has been widely used by the computational topology, computer graphics, and geometric modeling communities to devise topology-based algorithms and data structures. Forman introduced a discrete version of this theory which is purely combinatorial. This work aims to build, visualize, and apply the basic elements of Forman's discrete Morse theory. It intends to use some of those concepts to visually study the topology of an object. As a basis, an algorithmic construction of optimal Forman's discrete gradient vector fields is provided. This construction is then used to topologically analyze mesh compression schemes, such as Edgebreaker and Grow&Fold. In particular, this paper proves that the complexity class of the strategy optimization of Grow&Fold is MAX-SNP hard.

摘要

莫尔斯理论是研究光滑流形拓扑结构的有力工具。它已被计算拓扑学、计算机图形学和几何建模领域广泛用于设计基于拓扑的算法和数据结构。福尔曼引入了该理论的离散版本,它是纯组合的。这项工作旨在构建、可视化并应用福尔曼离散莫尔斯理论的基本元素。它打算使用其中一些概念来直观地研究物体的拓扑结构。作为基础,提供了最优福尔曼离散梯度向量场的算法构造。然后将此构造用于拓扑分析网格压缩方案,如边折叠算法和增长折叠算法。特别地,本文证明了增长折叠算法的策略优化的复杂度类是MAX-SNP难的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验