Suppr超能文献

灵长类重复DNA中的同源依赖性甲基化。

Homology-dependent methylation in primate repetitive DNA.

作者信息

Meunier Julien, Khelifi Adel, Navratil Vincent, Duret Laurent

机构信息

Unité Mixte de Recherche 5558 Centre National de la Recherche Scientifique, Université Claude Bernard-Lyon I, 16 Rue Raphael Dubois, 69622 Villeurbanne Cedex, France.

出版信息

Proc Natl Acad Sci U S A. 2005 Apr 12;102(15):5471-6. doi: 10.1073/pnas.0408986102. Epub 2005 Mar 29.

Abstract

In mammals, several studies have suggested that levels of methylation are higher in repetitive DNA than in nonrepetitive DNA, possibly reflecting a genome-wide defense mechanism against deleterious effects associated with transposable elements (TEs). To analyze the determinants of methylation patterns in primate repetitive DNA, we took advantage of the fact that the methylation rate in the germ line is reflected by the transition rate at CpG sites. We assessed the variability of CpG substitution rates in nonrepetitive DNA and in various TE and retropseudogene families. We show that, unlike other substitution rates, the rate of transition at CpG sites is significantly (37%) higher in repetitive DNA than in nonrepetitive DNA. Moreover, this rate of CpG transition varies according to the number of repeats, their length, and their level of divergence from the ancestral sequence (up to 2.7 times higher in long, lowly divergent TEs compared with unique sequences). This observation strongly suggests the existence of a homology-dependent methylation (HDM) mechanism in mammalian genomes. We propose that HDM is a direct consequence of interfering RNA-induced transcriptional gene silencing.

摘要

在哺乳动物中,多项研究表明,重复DNA中的甲基化水平高于非重复DNA,这可能反映了一种全基因组防御机制,以抵御与转座元件(TEs)相关的有害影响。为了分析灵长类动物重复DNA中甲基化模式的决定因素,我们利用了生殖系中的甲基化率由CpG位点的转换率反映这一事实。我们评估了非重复DNA以及各种TE和反转录假基因家族中CpG替换率的变异性。我们发现,与其他替换率不同,重复DNA中CpG位点的转换率比非重复DNA显著高(37%)。此外,这种CpG转换率根据重复次数、长度以及与祖先序列的差异程度而变化(与独特序列相比,长的、低差异的TE中的转换率高2.7倍)。这一观察结果强烈表明哺乳动物基因组中存在同源依赖性甲基化(HDM)机制。我们提出,HDM是干扰RNA诱导的转录基因沉默的直接结果。

相似文献

1
Homology-dependent methylation in primate repetitive DNA.
Proc Natl Acad Sci U S A. 2005 Apr 12;102(15):5471-6. doi: 10.1073/pnas.0408986102. Epub 2005 Mar 29.
2
Determining the global DNA methylation status of rat according to the identifier repetitive elements.
Electrophoresis. 2007 Nov;28(21):3854-61. doi: 10.1002/elps.200600733.
3
From the margins of the genome: mobile elements shape primate evolution.
Bioessays. 2005 Aug;27(8):785-94. doi: 10.1002/bies.20268.
4
Germline methylation patterns inferred from local nucleotide frequency of repetitive sequences in the human genome.
Mamm Genome. 2007 Apr;18(4):277-85. doi: 10.1007/s00335-007-9016-6. Epub 2007 May 19.
6
Loss of epigenetic silencing in tumors preferentially affects primate-specific retroelements.
Gene. 2009 Dec 15;448(2):151-67. doi: 10.1016/j.gene.2009.08.006. Epub 2009 Aug 21.
7
CGGBP1 mitigates cytosine methylation at repetitive DNA sequences.
BMC Genomics. 2015 May 16;16(1):390. doi: 10.1186/s12864-015-1593-2.
8
Variation in the molecular clock of primates.
Proc Natl Acad Sci U S A. 2016 Sep 20;113(38):10607-12. doi: 10.1073/pnas.1600374113. Epub 2016 Sep 6.
9
Tracking Alu evolution in New World primates.
BMC Evol Biol. 2005 Oct 6;5:51. doi: 10.1186/1471-2148-5-51.

引用本文的文献

1
Mutation Rate Variation and Other Challenges in 2-LTR Dating of Primate Endogenous Retrovirus Integrations.
J Mol Evol. 2025 Feb;93(1):62-82. doi: 10.1007/s00239-024-10225-5. Epub 2024 Dec 23.
5
The genomic diversification of grapevine clones.
BMC Genomics. 2019 Dec 12;20(1):972. doi: 10.1186/s12864-019-6211-2.
7
TPMS: a set of utilities for querying collections of gene trees.
BMC Bioinformatics. 2013 Mar 27;14:109. doi: 10.1186/1471-2105-14-109.
8
Epigenetic QTL mapping in Brassica napus.
Genetics. 2011 Nov;189(3):1093-102. doi: 10.1534/genetics.111.131615. Epub 2011 Sep 2.
10
Context dependent substitution biases vary within the human genome.
BMC Bioinformatics. 2010 Sep 15;11:462. doi: 10.1186/1471-2105-11-462.

本文引用的文献

1
siRNA induced transcriptional gene silencing in mammalian cells.
Cell Cycle. 2005 Mar;4(3):442-8. doi: 10.4161/cc.4.3.1520. Epub 2005 Mar 7.
2
HOPPSIGEN: a database of human and mouse processed pseudogenes.
Nucleic Acids Res. 2005 Jan 1;33(Database issue):D59-66. doi: 10.1093/nar/gki084.
3
The role of RNA interference in heterochromatic silencing.
Nature. 2004 Sep 16;431(7006):364-70. doi: 10.1038/nature02875.
4
Induction of DNA methylation and gene silencing by short interfering RNAs in human cells.
Nature. 2004 Sep 9;431(7005):211-7. doi: 10.1038/nature02889. Epub 2004 Aug 15.
5
Small interfering RNA-induced transcriptional gene silencing in human cells.
Science. 2004 Aug 27;305(5688):1289-92. doi: 10.1126/science.1101372. Epub 2004 Aug 5.
6
Role of transposable elements in heterochromatin and epigenetic control.
Nature. 2004 Jul 22;430(6998):471-6. doi: 10.1038/nature02651.
7
Evidence that functional transcription units cover at least half of the human genome.
Trends Genet. 2004 May;20(5):229-32. doi: 10.1016/j.tig.2004.03.001.
8
Genetic analysis of RNA-mediated transcriptional gene silencing.
Biochim Biophys Acta. 2004 Mar 15;1677(1-3):129-41. doi: 10.1016/j.bbaexp.2003.10.015.
9
Recombination drives the evolution of GC-content in the human genome.
Mol Biol Evol. 2004 Jun;21(6):984-90. doi: 10.1093/molbev/msh070. Epub 2004 Feb 12.
10
Role of the DRM and CMT3 methyltransferases in RNA-directed DNA methylation.
Curr Biol. 2003 Dec 16;13(24):2212-7. doi: 10.1016/j.cub.2003.11.052.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验