Fueta Y, Kunugita N, Schwarz W
Department of Med. Tech., School of Health Sciences, Univ. Occupat./Environmental Health, Iseigaoka 1-1, Yahatanishi-ku, Kitakyushu 807-8555, Japan.
Neuroscience. 2005;132(2):335-45. doi: 10.1016/j.neuroscience.2004.12.044.
Vigabatrin, an inhibitor of GABA breakdown by GABA transaminase and of GABA transporter isoform 1 (GAT1), and tiagabine, a highly specific inhibitor of GAT1, have successfully been applied in the treatment of epilepsy. We investigated the effects of individual and combined application of these drugs on GAT1 expressed in Xenopus oocytes, and examined the effects on epileptiform discharges in the CA3 area of brain slices of genetically epileptic El and control ddY mice, and on the occurrence of seizures in El mice. Simultaneous application of vigabatrin and tiagabine inhibited epileptiform discharges induced by high-K+ solution in the brain slices in an antagonistic fashion. The degree of inhibition by tiagabine after pre-treatment with vigabatrin was additive in ddY mice and synergistic in El mice. In Mg2+-free solution, co-treatment by the two drugs produced additive inhibition in slices from both mouse strains, but pre-treatment with vigabatrin produced synergistic inhibition in slices only from ddY mice. In the slices from El mice, a combination of drugs resulted in additive effects in both co- and pre-treatment by the drugs. Although these drugs are also effective in vivo at suppressing seizure occurrence in El mice, the combined application does not show synergistic effects, but rather is antagonistic under the experimental conditions in this particular variant of epilepsy. The synergistic inhibition of epileptiform discharges in brain slices may, in part, have originated from the complex interaction with GAT1. In experiments on the GAT1 expressed in oocytes it could be demonstrated that synergistic inhibition occurs only at low concentration (0.1 nM) of vigabatrin. This illustrates that the oocytes may form a powerful test system for drug screening and investigation of complex drug interactions. These results present a novel interpretation of synergistic inhibition of certain epileptic discharges using vigabatrin and another drug, and that for successful synergistic treatment of epilepsies carefully designed timed dosage regimens are essential.
氨己烯酸是一种通过抑制γ-氨基丁酸转氨酶(GABA 转氨酶)和γ-氨基丁酸转运体亚型 1(GAT1)来减少 GABA 分解的药物,而替加宾是一种对 GAT1 具有高度特异性的抑制剂,它们已成功应用于癫痫治疗。我们研究了这些药物单独使用及联合使用对非洲爪蟾卵母细胞中表达的 GAT1 的影响,并检测了它们对遗传性癫痫 El 小鼠和对照 ddY 小鼠脑片 CA3 区癫痫样放电以及 El 小鼠癫痫发作的影响。同时应用氨己烯酸和替加宾以拮抗方式抑制了高钾溶液在脑片中诱导的癫痫样放电。在 ddY 小鼠中,先用氨己烯酸预处理后再用替加宾,其抑制程度具有相加作用;而在 El 小鼠中则具有协同作用。在无镁溶液中,两种药物联合处理对两种小鼠品系脑片均产生相加抑制作用,但先用氨己烯酸预处理仅对 ddY 小鼠脑片产生协同抑制作用。在 El 小鼠脑片中,药物联合使用在同时给药和预处理时均产生相加效应。尽管这些药物在体内也能有效抑制 El 小鼠的癫痫发作,但联合应用并未显示出协同作用,而是在这种特定癫痫变体的实验条件下表现为拮抗作用。脑片中癫痫样放电的协同抑制作用可能部分源于与 GAT1 的复杂相互作用。在对卵母细胞中表达的 GAT1 进行的实验中可以证明,协同抑制仅在低浓度(0.1 nM)的氨己烯酸时发生。这表明卵母细胞可能构成一个强大的药物筛选和复杂药物相互作用研究的测试系统。这些结果为使用氨己烯酸和另一种药物协同抑制某些癫痫放电提供了新的解释,并且对于成功协同治疗癫痫,精心设计的定时给药方案至关重要。