Suppr超能文献

Y265F突变体对基于转氨作用的丙氨酸消旋酶环丝氨酸失活的影响。

Effect of a Y265F mutant on the transamination-based cycloserine inactivation of alanine racemase.

作者信息

Fenn Timothy D, Holyoak Todd, Stamper Geoffrey F, Ringe Dagmar

机构信息

Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, Massachusetts 02454, USA.

出版信息

Biochemistry. 2005 Apr 12;44(14):5317-27. doi: 10.1021/bi047842l.

Abstract

The requirement for d-alanine in the peptidoglycan layer of bacterial cell walls is fulfilled in part by alanine racemase (EC 5.1.1.1), a pyridoxal 5'-phosphate (PLP)-assisted enzyme. The enzyme utilizes two antiparallel bases focused at the C(alpha) position and oriented perpendicular to the PLP ring to facilitate the equilibration of alanine enantiomers. Understanding how this two-base system is utilized and controlled to yield reaction specificity is therefore a potential means for designing antibiotics. Cycloserine is a known alanine racemase suicide substrate, although its mechanism of inactivation is based on transaminase chemistry. Here we characterize the effects of a Y265F mutant (Tyr265 acts as the catalytic base in the l-isomer case) of Bacillus stearothermophilus alanine racemase on cycloserine inactivation. The Y265F mutant reduces racemization activity 1600-fold [Watanabe, A., Yoshimura, T., Mikami, B., and Esaki, N. (1999) J. Biochem. 126, 781-786] and only leads to formation of the isoxazole end product (the result of the transaminase pathway) in the case of d-cycloserine, in contrast to results obtained using the wild-type enzyme. l-Cycloserine, on the other hand, utilizes a number of alternative pathways in the absence of Y265, emphasizing the importance of Y265 in both the inactivation and racemization pathway. In combination with the kinetics of inactivation, these results suggest roles for each of the two catalytic bases in racemization and inactivation, as well as the importance of Y265 in "steering" the chemistry to favor one pathway over another.

摘要

细菌细胞壁肽聚糖层对D-丙氨酸的需求部分由丙氨酸消旋酶(EC 5.1.1.1)满足,该酶是一种依赖磷酸吡哆醛(PLP)的酶。该酶利用两个反平行碱基聚焦于α碳原子位置并垂直于PLP环定向,以促进丙氨酸对映体的平衡。因此,了解这种双碱基系统如何被利用和控制以产生反应特异性是设计抗生素的一种潜在方法。环丝氨酸是一种已知的丙氨酸消旋酶自杀底物,尽管其失活机制基于转氨酶化学。在这里,我们表征了嗜热脂肪芽孢杆菌丙氨酸消旋酶的Y265F突变体(在L-异构体情况下,Tyr265作为催化碱基)对环丝氨酸失活的影响。Y265F突变体使消旋活性降低了1600倍[渡边,A.,吉村,T.,三上,B.,和江崎,N.(1999年)《生物化学杂志》126,781 - 786],并且与使用野生型酶得到的结果相反,在D-环丝氨酸的情况下仅导致异恶唑终产物的形成(转氨酶途径的结果)。另一方面,L-环丝氨酸在没有Y265的情况下利用多种替代途径,强调了Y265在失活和消旋途径中的重要性。结合失活动力学,这些结果表明两个催化碱基在消旋和失活中的各自作用,以及Y265在“引导”化学反应以 favor 一种途径而非另一种途径方面的重要性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验