Suppr超能文献

剪接因子Prp24的N端和C端RNA识别基序在U6 RNA结合中具有不同功能。

The N- and C-terminal RNA recognition motifs of splicing factor Prp24 have distinct functions in U6 RNA binding.

作者信息

Kwan Sharon S, Brow David A

机构信息

Department of Biomolecular Chemistry, University of Wisconsin Medical School, 1300 University Ave, Madison, Wisconsin 53706, USA.

出版信息

RNA. 2005 May;11(5):808-20. doi: 10.1261/rna.2010905. Epub 2005 Apr 5.

Abstract

Prp24 is an essential yeast U6 snRNP protein with four RNA recognition motifs (RRMs) that facilitates the association of U4 and U6 snRNPs during spliceosome assembly. Genetic interactions led to the proposal that RRMs 2 and 3 of Prp24 bind U6 RNA, while RRMs 1 and 4 bind U4 RNA. However, the function of each RRM has yet to be established through biochemical means. We compared the binding of recombinant full-length Prp24 and truncated forms lacking RRM 1 or RRM 4 with U6 RNA. Contrary to expectations, we found that the N-terminal segment containing RRM 1 is important for high-affinity binding to U6 RNA and for discrimination between wild-type U6 RNA and U6 with point mutations in the 3' intramolecular stem-loop. In contrast, deletion of RRM 4 and the C terminus did not significantly alter the affinity for U6 RNA, but resulted in the formation of higher order Prp24.U6 complexes. Truncation and internal deletion of U6 RNA mapped three Prp24-binding sites, with the central site providing most of the affinity for Prp24. A newly identified temperature-sensitive lethal point mutation in RRM 1 is exacerbated by mutations in the U6 RNA telestem, as is a mutation in RRM 2, but not one in RRM 3. We propose that RRMs 1 and 2 of yeast Prp24 bind the same central site in U6 RNA that is bound by the two RRMs of human Prp24, and that RRMs 3 and 4 bind lower affinity flanking sites, thereby restricting the stoichiometry of Prp24 binding.

摘要

Prp24是一种必需的酵母U6 snRNP蛋白,具有四个RNA识别基序(RRMs),在剪接体组装过程中促进U4和U6 snRNP的结合。遗传相互作用表明,Prp24的RRMs 2和3结合U6 RNA,而RRMs 1和4结合U4 RNA。然而,每个RRM的功能尚未通过生化手段确定。我们比较了重组全长Prp24和缺失RRM 1或RRM 4的截短形式与U6 RNA的结合情况。与预期相反,我们发现包含RRM 1的N端片段对于与U6 RNA的高亲和力结合以及区分野生型U6 RNA和3'分子内茎环有单点突变的U6至关重要。相比之下,删除RRM 4和C端并没有显著改变对U6 RNA的亲和力,但导致形成更高阶的Prp24.U6复合物。U6 RNA的截短和内部缺失确定了三个Prp24结合位点,其中央位点提供了对Prp24的大部分亲和力。RRM 1中新鉴定的温度敏感致死点突变在U6 RNA远端茎的突变中会加剧,RRM 2中的突变也是如此,但RRM 3中的突变则不会。我们提出,酵母Prp24的RRMs 1和2结合U6 RNA中的同一个中央位点,该位点与人Prp24的两个RRMs结合的位点相同,并且RRMs 3和4结合亲和力较低的侧翼位点,从而限制了Prp24结合的化学计量。

相似文献

2
Structure and interactions of the first three RNA recognition motifs of splicing factor prp24.
J Mol Biol. 2007 Apr 13;367(5):1447-58. doi: 10.1016/j.jmb.2007.01.078. Epub 2007 Feb 7.
3
6
Spliceosome assembly in the absence of stable U4/U6 RNA pairing.
RNA. 2015 May;21(5):923-34. doi: 10.1261/rna.048421.114. Epub 2015 Mar 11.
7
Structural requirements for protein-catalyzed annealing of U4 and U6 RNAs during di-snRNP assembly.
Nucleic Acids Res. 2016 Feb 18;44(3):1398-410. doi: 10.1093/nar/gkv1374. Epub 2015 Dec 15.
8
A novel occluded RNA recognition motif in Prp24 unwinds the U6 RNA internal stem loop.
Nucleic Acids Res. 2011 Sep 1;39(17):7837-47. doi: 10.1093/nar/gkr455. Epub 2011 Jun 7.

引用本文的文献

1
RNA modifications and Prp24 coordinate Lsm2-8 binding dynamics during S. cerevisiae U6 snRNP assembly.
J Biol Chem. 2025 May;301(5):108497. doi: 10.1016/j.jbc.2025.108497. Epub 2025 Apr 10.
2
RNA Modifications and Prp24 Coordinate Lsm2-8 Binding Dynamics during U6 snRNP Assembly.
bioRxiv. 2025 Feb 27:2025.02.25.639938. doi: 10.1101/2025.02.25.639938.
3
Transcriptomic Analysis of Two Genotypes With Different Cadmium Accumulation Ability.
Front Microbiol. 2020 Sep 16;11:558104. doi: 10.3389/fmicb.2020.558104. eCollection 2020.
4
Architecture of the U6 snRNP reveals specific recognition of 3'-end processed U6 snRNA.
Nat Commun. 2018 May 1;9(1):1749. doi: 10.1038/s41467-018-04145-4.
5
The life of U6 small nuclear RNA, from cradle to grave.
RNA. 2018 Apr;24(4):437-460. doi: 10.1261/rna.065136.117. Epub 2018 Jan 24.
6
Structural requirements for protein-catalyzed annealing of U4 and U6 RNAs during di-snRNP assembly.
Nucleic Acids Res. 2016 Feb 18;44(3):1398-410. doi: 10.1093/nar/gkv1374. Epub 2015 Dec 15.
7
Rapid isolation and single-molecule analysis of ribonucleoproteins from cell lysate by SNAP-SiMPull.
RNA. 2015 May;21(5):1031-41. doi: 10.1261/rna.047845.114. Epub 2015 Mar 24.
8
Core structure of the U6 small nuclear ribonucleoprotein at 1.7-Å resolution.
Nat Struct Mol Biol. 2014 Jun;21(6):544-51. doi: 10.1038/nsmb.2832. Epub 2014 May 18.
9
Deep mutational scanning of an RRM domain of the Saccharomyces cerevisiae poly(A)-binding protein.
RNA. 2013 Nov;19(11):1537-51. doi: 10.1261/rna.040709.113. Epub 2013 Sep 24.
10
Functional roles of protein splicing factors.
Biosci Rep. 2012 Aug;32(4):345-59. doi: 10.1042/BSR20120007.

本文引用的文献

1
U2-U6 RNA folding reveals a group II intron-like domain and a four-helix junction.
Nat Struct Mol Biol. 2004 Dec;11(12):1237-42. doi: 10.1038/nsmb863. Epub 2004 Nov 14.
2
Lsm proteins promote regeneration of pre-mRNA splicing activity.
Curr Biol. 2004 Aug 24;14(16):1487-91. doi: 10.1016/j.cub.2004.08.032.
4
U2AF homology motifs: protein recognition in the RRM world.
Genes Dev. 2004 Jul 1;18(13):1513-26. doi: 10.1101/gad.1206204.
5
Multiple functions for the invariant AGC triad of U6 snRNA.
RNA. 2004 Jun;10(6):921-8. doi: 10.1261/rna.7310704.
6
Recycling of the U12-type spliceosome requires p110, a component of the U6atac snRNP.
Mol Cell Biol. 2004 Feb;24(4):1700-8. doi: 10.1128/MCB.24.4.1700-1708.2004.
7
The Prp19p-associated complex in spliceosome activation.
Science. 2003 Oct 10;302(5643):279-82. doi: 10.1126/science.1086602. Epub 2003 Sep 11.
8
Structural basis for a lethal mutation in U6 RNA.
Biochemistry. 2003 Feb 18;42(6):1470-7. doi: 10.1021/bi027137h.
9
10
Allosteric cascade of spliceosome activation.
Annu Rev Genet. 2002;36:333-60. doi: 10.1146/annurev.genet.36.043002.091635. Epub 2002 Jun 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验