Suppr超能文献

Reactivation of newt lung cilia: evidence for a possible temperature- and MgATP-induced activation mechanism.

作者信息

Hard R, Cypher C

机构信息

Department of Anatomical Sciences, SUNY, Buffalo 14214.

出版信息

Cell Motil Cytoskeleton. 1992;21(3):187-98. doi: 10.1002/cm.970210303.

Abstract

Optimal conditions have been developed for the isolation and reactivation of highly coupled, demembranated ciliary axonemes from newt lungs [Hard, Cypher, and Schabtach, 1988, Cell Motil. Cytoskeleton 10:271-284]. In the present study, the motility of these cilia was further characterized by examining the effects of nucleotides, divalent cations, and temperature on beat frequency. When exposed to a reactivating solution containing Mg2+ and ATP, nearly 100% of the axonemes were motile and beat at frequencies of 0-50 Hz, depending on [MgATP] and temperature. Divalent cations were required for movement, with Mg2+ 2-3 times more effective than Ca2+. There was no absolute requirement for Ca2+ for motility. The beat frequencies obtained with fixed ATP and varying Mg2+ concentrations indicate that MgATP serves as the actual substrate. The effects of MgATP on beat frequency depended on the degree of mechanochemical coupling and temperature. When highly coupled preparations were reactivated at 21 degrees C, double reciprocal plots of beat frequency vs. [MgATP] were biphasic with extrapolated Fmax values of 22 and 44.8 Hz. However, when reactivated at 10 degrees C and 30 degrees C, linear plots were generated with Fmax values of 18.3 and 48.9 Hz, respectively. The beat frequencies of cultured cells and reactivated axonemes also varied biphasically with temperature. Our data suggest that newt lung respiratory cilia possess an intra-axonemal activation mechanism involving a temperature- and MgATP-induced transition between two distinct states whose maximum beat frequencies differ by 200-300%.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验