Suppr超能文献

用现代固化设备照射的树脂基复合材料的收缩行为。

Shrinkage behavior of a resin-based composite irradiated with modern curing units.

作者信息

Ilie Nicoleta, Felten Kathrin, Trixner Katja, Hickel Reinhard, Kunzelmann Karl-Heinz

机构信息

Department of Restorative Dentistry, Dental School of the Ludwig-Maximilians-University, Goethestr. 70, Munich 80336, Germany.

出版信息

Dent Mater. 2005 May;21(5):483-9. doi: 10.1016/j.dental.2004.08.007.

Abstract

OBJECTIVE

The present study determined the influence of different light curing regimes (four light-emitting diode (LED) units (Freelight 1 and 2, 3M-ESPE; e-light, GC; Bluephase (prototype), Ivoclar Vivadent), two quartz-tungsten-halogen (QTH) lights (Astralis 10, Ivoclar Vivadent; Swiss Master Light, EMS) and one plasma-light curing unit (Easy Cure, DMDS)) on the curing behavior of a resin-based composite material (InTen-S, Ivoclar Vivadent).

METHODS

Polymerization shrinkage was induced by light curing the tested material with 14 different regimes of the curing units mentioned above. The contraction stress was recorded for 300 s at room temperature with a Stress-Strain-Analyzer (c(FACTOR)=0.3). The maximum contraction stresses after 300 s, the time until gelation (t(0.5N)), and the coefficient of near linear fit of contraction force/time (gradient) were analyzed. The statistical analysis was conducted using ANOVA (alpha=0.05) and Tukey's post hoc test.

RESULTS

The five tested regimes of the LED unit e-light revealed the lowest statistically significantly maximum contraction stress followed by the low intensity LED unit Freelight 1 and the plasma curing unit Easy Cure. The high intensity LED unit Freelight 2 exhibited a significantly higher contraction stress compared to Freelight 1. No significant differences between the standard and exponential modes within these curing units were found. No significant differences were found between the LED unit Freelight 2 and the pulse program of the halogen light curing unit Astralis 10. The highest polymerization stresses were observed for the high energy curing units, either QTH (Swiss Master Light and Astralis 10) or LED (Bluephase).

SIGNIFICANCE

Fast contraction force development, high contraction stress and an early start of stress build-up cause tension in the material with possible subsequent distortion of the bond to the tooth structure. The lowest polymerization stress was observed for the low energy LED lamps, while the plasma unit and the high energy QTH and LED curing units produced two to three times higher stress.

摘要

目的

本研究确定了不同光固化方式(四种发光二极管(LED)装置(Freelight 1和2,3M-ESPE公司;e-light,GC公司;Bluephase(原型),义获嘉伟瓦登特公司)、两种石英钨卤素(QTH)灯(Astralis 10,义获嘉伟瓦登特公司;Swiss Master Light,EMS公司)和一种等离子光固化装置(Easy Cure,DMDS公司))对一种树脂基复合材料(InTen-S,义获嘉伟瓦登特公司)固化行为的影响。

方法

通过用上述14种不同的固化装置光固化测试材料来诱导聚合收缩。使用应力应变分析仪在室温下记录300秒的收缩应力(c(FACTOR)=0.3)。分析300秒后的最大收缩应力、凝胶化时间(t(0.5N))以及收缩力/时间的近似线性拟合系数(梯度)。使用方差分析(α=0.05)和Tukey事后检验进行统计分析。

结果

LED装置e-light的五种测试方式显示出统计学上显著最低的最大收缩应力,其次是低强度LED装置Freelight 1和等离子固化装置Easy Cure。与Freelight 1相比,高强度LED装置Freelight 2表现出显著更高的收缩应力。在这些固化装置的标准模式和指数模式之间未发现显著差异。在LED装置Freelight 2和卤素光固化装置Astralis 10的脉冲程序之间未发现显著差异。对于高能固化装置,无论是QTH(Swiss Master Light和Astralis 10)还是LED(Bluephase),都观察到了最高的聚合应力。

意义

快速的收缩力发展、高收缩应力以及应力积累的早期开始会导致材料内部产生张力,可能随后使与牙结构的粘结变形。低能量LED灯的聚合应力最低,而等离子装置以及高能量QTH和LED固化装置产生的应力则高出两到三倍。

相似文献

1
Shrinkage behavior of a resin-based composite irradiated with modern curing units.
Dent Mater. 2005 May;21(5):483-9. doi: 10.1016/j.dental.2004.08.007.
3
Evaluation of micro-tensile bond strengths of composite materials in comparison to their polymerization shrinkage.
Dent Mater. 2006 Jul;22(7):593-601. doi: 10.1016/j.dental.2005.05.014. Epub 2005 Nov 14.

引用本文的文献

1
The Effect of Two Different Light-Curing Units and Curing Times on Bulk-Fill Restorative Materials.
Polymers (Basel). 2022 May 5;14(9):1885. doi: 10.3390/polym14091885.
2
Evaluation of low-viscosity bulk-fill composites regarding marginal and internal adaptation.
Odontology. 2021 Jan;109(1):139-148. doi: 10.1007/s10266-020-00531-x. Epub 2020 Jun 9.
3
Comparison of the Shear Bond Strength of Silorane-Based Composite Resin and Methacrylate Based Composite Resin to MTA.
J Dent Res Dent Clin Dent Prospects. 2018 Winter;12(1):1-5. doi: 10.15171/joddd.2018.001. Epub 2018 Mar 14.
4
Bond strengths of silorane- and methacrylate-based composites to various underlying materials.
Biomed Res Int. 2014;2014:782090. doi: 10.1155/2014/782090. Epub 2014 May 7.
7
Hardening of a dual-cure resin cement using QTH and LED curing units.
J Appl Oral Sci. 2010 Mar-Apr;18(2):110-5. doi: 10.1590/s1678-77572010000200003.
8
Influence of light curing source on microhardness of composite resins of different shades.
J Appl Oral Sci. 2006 Jan;14(1):10-5. doi: 10.1590/s1678-77572006000100003.
9
Residual stress in composites with the thin-ring-slitting approach.
J Dent Res. 2006 Oct;85(10):945-9. doi: 10.1177/154405910608501015.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验