Birukova Anna A, Birukov Konstantin G, Adyshev Djanibek, Usatyuk Peter, Natarajan Viswanathan, Garcia Joe G N, Verin Alexander D
Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA.
J Cell Physiol. 2005 Sep;204(3):934-47. doi: 10.1002/jcp.20359.
Transforming growth factor-beta1 (TGF-beta1) is a cytokine critically involved in acute lung injury and endothelial cell (EC) barrier dysfunction. We have studied TGF-beta1-mediated signaling pathways and examined a role of microtubule (MT) dynamics in TGF-beta1-induced actin cytoskeletal remodeling and EC barrier dysfunction. TGF-beta1 (0.1-50 ng/ml) induced dose-dependent decrease in transendothelial electrical resistance (TER) in bovine pulmonary ECs, which was linked to increased actin stress fiber formation, myosin light chain (MLC) phosphorylation, EC retraction, and gap formation. Inhibitor of TGF-beta1 receptor kinase RI (5 microM) abolished TGF-beta1-induced TER decline, whereas inhibitor of caspase-3 zVAD (10 microM) was without effect. TGF-beta1-induced EC barrier dysfunction was linked to partial dissolution of peripheral MT meshwork and decreased levels of stable (acetylated) MT pool, whereas MT stabilization by taxol (5 microM) attenuated TGF-beta1-induced barrier dysfunction and actin remodeling. TGF-beta1 induced sustained activation of small GTPase Rho and its effector Rho-kinase; phosphorylation of myosin binding subunit of myosin specific phosphatase; MLC phosphorylation; EC contraction; and gap formation, which was abolished by inhibition of Rho and Rho-kinase, and by MT stabilization with taxol. Finally, elevation of intracellular cAMP induced by forskolin (50 microM) attenuated TGF-beta1-induced barrier dysfunction, MLC phosphorylation, and protected the MT peripheral network. These results suggest a novel role for MT dynamics in the TGF-beta1-mediated Rho regulation, EC barrier dysfunction, and actin remodeling.
转化生长因子-β1(TGF-β1)是一种在急性肺损伤和内皮细胞(EC)屏障功能障碍中起关键作用的细胞因子。我们研究了TGF-β1介导的信号通路,并探讨了微管(MT)动力学在TGF-β1诱导的肌动蛋白细胞骨架重塑和EC屏障功能障碍中的作用。TGF-β1(0.1 - 50 ng/ml)可诱导牛肺ECs的跨内皮电阻(TER)呈剂量依赖性降低,这与肌动蛋白应力纤维形成增加、肌球蛋白轻链(MLC)磷酸化、EC收缩和间隙形成有关。TGF-β1受体激酶RI抑制剂(5 μM)消除了TGF-β1诱导的TER下降,而caspase-3抑制剂zVAD(10 μM)则无作用。TGF-β1诱导的EC屏障功能障碍与外周MT网络的部分溶解和稳定(乙酰化)MT池水平降低有关,而紫杉醇(5 μM)使MT稳定可减轻TGF-β1诱导的屏障功能障碍和肌动蛋白重塑。TGF-β1诱导小GTPase Rho及其效应器Rho激酶持续激活;肌球蛋白特异性磷酸酶的肌球蛋白结合亚基磷酸化;MLC磷酸化;EC收缩;以及间隙形成,这些均可通过抑制Rho和Rho激酶以及用紫杉醇使MT稳定来消除。最后,福斯可林(50 μM)诱导的细胞内cAMP升高减轻了TGF-β1诱导的屏障功能障碍、MLC磷酸化,并保护了MT外周网络。这些结果表明MT动力学在TGF-β1介导的Rho调节、EC屏障功能障碍和肌动蛋白重塑中具有新作用。