Bisquert Juan, Henn François, Giuntini Jean-Charles
Departament de Ciències Experimentals, Universitat Jaume I, 12080 Castelló, Spain.
J Chem Phys. 2005 Mar 1;122(9):094507. doi: 10.1063/1.1858862.
Strong changes in relaxation rates observed at the glass transition region are frequently explained in terms of a physical singularity of the molecular motions. We show that the unexpected trends and values for activation energy and preexponential factor of the relaxation time tau, obtained at the glass transition from the analysis of the thermally stimulated current signal, result from the use of the Arrhenius law for treating the experimental data obtained in nonstationary experimental conditions. We then demonstrate that a simple model of structural relaxation based on a time dependent configurational entropy and Adam-Gibbs relaxation time is sufficient to explain the experimental behavior, without invoking a kinetic singularity at the glass transition region. The pronounced variation of the effective activation energy appears as a dynamic signature of entropy relaxation that governs the change of relaxation time in nonstationary conditions. A connection is demonstrated between the peak of apparent activation energy measured in nonequilibrium dielectric techniques, with the overshoot of the dynamic specific heat that is obtained in calorimetry techniques.
在玻璃化转变区域观察到的弛豫速率的强烈变化通常用分子运动的物理奇异性来解释。我们表明,通过对热激发电流信号的分析在玻璃化转变时获得的弛豫时间τ的活化能和指前因子的意外趋势和值,是由于在非平稳实验条件下使用阿仑尼乌斯定律处理实验数据所致。然后我们证明,基于时间相关的构型熵和亚当 - 吉布斯弛豫时间的简单结构弛豫模型足以解释实验行为,而无需在玻璃化转变区域引入动力学奇异性。有效活化能的显著变化表现为熵弛豫的动态特征,它在非平稳条件下控制着弛豫时间的变化。在非平衡介电技术中测量的表观活化能峰值与量热技术中获得的动态比热过冲之间建立了联系。