Suppr超能文献

玻璃化过程中的熵冻结与产生

Freezing-in and production of entropy in vitrification.

作者信息

Möller Jörg, Gutzow Ivan, Schmelzer Jürn W P

机构信息

scitecon, Bayreuther Strasse 13, 01187 Dresden, Germany.

出版信息

J Chem Phys. 2006 Sep 7;125(9):094505. doi: 10.1063/1.2346673.

Abstract

Following the classical concepts developed by Simon [Z. Anorg. Allg. Chem. 203, 219 (1931)], vitrification in the cooling of glass-forming melts is commonly interpreted as the transformation of a thermodynamically (meta)stable equilibrium system into a frozen-in, thermodynamically nonequilibrium system, the glass. Hereby it is assumed that the transformation takes place at some well-defined sharp temperature, the glass transition temperature Tg. However, a more detailed experimental and theoretical analysis shows that the transition to a glass proceeds in a broader temperature range, where the characteristic times of change of temperature, tauT=-(TT), and relaxation times, tau, of the system to the respective equilibrium states are of similar order of magnitude. In this transition interval, the interplay of relaxation and change of external control parameters determines the value of the structural order parameters. In addition, irreversible processes take place in the transition interval, resulting both in an entropy freezing-in as well as in an irreversible increase of entropy and, as a result, in significant changes of all other thermodynamic parameters of the vitrifying systems. The effect of entropy production on glass transition and on the properties of glasses is analyzed here for the first time. In this analysis, the structural order-parameter concept as developed by de Donder and van Rysselberghe [Thermodynamic Theory of Affinity (Stanford University Press, Stanford, 1936)] and Prigogine and Defay [Chemical Thermodynamics (Longmans, London, 1954)] is employed. In the framework of this approach we obtain general expressions for the thermodynamic properties of vitrifying systems such as heat capacity, enthalpy, entropy, and Gibbs' free energy, and for the entropy production. As one of the general conclusions we show that entropy production has a single maximum upon cooling and two maxima upon heating in the glass transition interval. The theoretical concepts developed allow us to explain in addition to the thermodynamic parameters also specific features of the kinetic parameters of glass-forming melts such as the viscosity. Experimental results are presented which confirm the theoretical conclusions. Further experiments are suggested, allowing one to test several additional predictions of the theory.

摘要

遵循西蒙[《德国应用化学》203, 219 (1931)]提出的经典概念,玻璃形成熔体冷却过程中的玻璃化通常被解释为一个热力学(亚)稳定平衡体系转变为一个冻结的、热力学非平衡体系,即玻璃。在此过程中,假定转变发生在某个明确的尖锐温度,即玻璃转变温度Tg。然而,更详细的实验和理论分析表明,向玻璃的转变是在一个更宽的温度范围内进行的,在此温度范围内,温度变化的特征时间τT = -(dT/dt)以及体系达到各自平衡态的弛豫时间τ具有相似的量级。在这个转变区间内,弛豫与外部控制参数变化之间的相互作用决定了结构序参量的值。此外,在转变区间内会发生不可逆过程,这既导致熵的冻结,也导致熵的不可逆增加,结果是玻璃化体系的所有其他热力学参数发生显著变化。本文首次分析了熵产生对玻璃转变及玻璃性质的影响。在该分析中,采用了德唐德和范里斯塞尔贝赫[《亲和力的热力学理论》(斯坦福大学出版社,斯坦福,1936)]以及普里戈金和德法伊[《化学热力学》(朗曼斯,伦敦,1954)]所发展的结构序参量概念。在这种方法的框架下,我们得到了玻璃化体系热力学性质(如热容、焓、熵和吉布斯自由能)以及熵产生的一般表达式。作为一个一般性结论,我们表明在冷却过程中熵产生有一个单一的最大值,而在加热过程中在玻璃转变区间有两个最大值。所发展的理论概念使我们除了能解释热力学参数外,还能解释玻璃形成熔体动力学参数(如粘度)的具体特征。文中给出了证实理论结论的实验结果。还提出了进一步的实验,以便能够检验该理论的其他几个预测。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验