Suppr超能文献

PspA介导的AAA转录激活因子PspF抑制作用的分子决定因素

Molecular determinants for PspA-mediated repression of the AAA transcriptional activator PspF.

作者信息

Elderkin Sarah, Bordes Patricia, Jones Susan, Rappas Mathieu, Buck Martin

机构信息

Imperial College London, Department of Biological Sciences, Sir Alexander Fleming Building, South Kensington Campus, London SW7 2AZ, UK.

出版信息

J Bacteriol. 2005 May;187(9):3238-48. doi: 10.1128/JB.187.9.3238-3248.2005.

Abstract

The Escherichia coli phage shock protein system (pspABCDE operon and pspG gene) is induced by numerous stresses related to the membrane integrity state. Transcription of the psp genes requires the RNA polymerase containing the sigma(54) subunit and the AAA transcriptional activator PspF. PspF belongs to an atypical class of sigma(54) AAA activators in that it lacks an N-terminal regulatory domain and is instead negatively regulated by another regulatory protein, PspA. PspA therefore represses its own expression. The PspA protein is distributed between the cytoplasm and the inner membrane fraction. In addition to its transcriptional inhibitory role, PspA assists maintenance of the proton motive force and protein export. Several lines of in vitro evidence indicate that PspA-PspF interactions inhibit the ATPase activity of PspF, resulting in the inhibition of PspF-dependent gene expression. In this study, we characterize sequences within PspA and PspF crucial for the negative effect of PspA upon PspF. Using a protein fragmentation approach, we show that the integrity of the three putative N-terminal alpha-helical domains of PspA is crucial for the role of PspA as a negative regulator of PspF. A bacterial two-hybrid system allowed us to provide clear evidence for an interaction in E. coli between PspA and PspF in vivo, which strongly suggests that PspA-directed inhibition of PspF occurs via an inhibitory complex. Finally, we identify a single PspF residue that is a binding determinant for PspA.

摘要

大肠杆菌噬菌体休克蛋白系统(pspABCDE操纵子和pspG基因)由众多与膜完整性状态相关的应激诱导。psp基因的转录需要含有σ⁵⁴亚基的RNA聚合酶和AAA转录激活因子PspF。PspF属于一类非典型的σ⁵⁴ AAA激活因子,因为它缺乏N端调节结构域,而是受另一种调节蛋白PspA的负调控。因此,PspA抑制其自身的表达。PspA蛋白分布在细胞质和内膜部分。除了其转录抑制作用外,PspA还协助维持质子动力势和蛋白质输出。几条体外证据表明,PspA - PspF相互作用抑制PspF的ATPase活性,从而抑制PspF依赖的基因表达。在本研究中,我们鉴定了PspA和PspF中对于PspA对PspF的负面影响至关重要的序列。使用蛋白质片段化方法,我们表明PspA三个推定的N端α螺旋结构域的完整性对于PspA作为PspF负调节因子的作用至关重要。细菌双杂交系统使我们能够提供明确的证据,证明PspA和PspF在大肠杆菌体内相互作用,这强烈表明PspA对PspF的抑制是通过抑制复合物发生的。最后,我们鉴定出一个单一的PspF残基,它是PspA的结合决定因素。

相似文献

1
Molecular determinants for PspA-mediated repression of the AAA transcriptional activator PspF.
J Bacteriol. 2005 May;187(9):3238-48. doi: 10.1128/JB.187.9.3238-3248.2005.
9
Evidence for a second regulatory binding site on PspF that is occupied by the C-terminal domain of PspA.
PLoS One. 2018 Jun 15;13(6):e0198564. doi: 10.1371/journal.pone.0198564. eCollection 2018.
10
Identification of a new member of the phage shock protein response in Escherichia coli, the phage shock protein G (PspG).
J Biol Chem. 2004 Dec 31;279(53):55707-14. doi: 10.1074/jbc.M408994200. Epub 2004 Oct 13.

引用本文的文献

1
Engineered Phage Enables Efficient Control of Gene Expression upon Infection of the Host Cell.
Int J Mol Sci. 2024 Dec 30;26(1):250. doi: 10.3390/ijms26010250.
2
The phage shock protein (PSP) envelope stress response: discovery of novel partners and evolutionary history.
mSystems. 2024 Jun 18;9(6):e0084723. doi: 10.1128/msystems.00847-23. Epub 2024 May 29.
3
Reversible conjugation of a CBASS nucleotide cyclase regulates bacterial immune response to phage infection.
Nat Microbiol. 2024 Jun;9(6):1579-1592. doi: 10.1038/s41564-024-01670-5. Epub 2024 Apr 8.
4
Bacterial Vipp1 and PspA are members of the ancient ESCRT-III membrane-remodeling superfamily.
Cell. 2021 Jul 8;184(14):3660-3673.e18. doi: 10.1016/j.cell.2021.05.041. Epub 2021 Jun 23.
5
The route to transcription initiation determines the mode of transcriptional bursting in E. coli.
Nat Commun. 2020 May 15;11(1):2422. doi: 10.1038/s41467-020-16367-6.
6
Envelope stress responses: balancing damage repair and toxicity.
Nat Rev Microbiol. 2019 Jul;17(7):417-428. doi: 10.1038/s41579-019-0199-0.
7
The Fusion Activity of IM30 Rings Involves Controlled Unmasking of the Fusogenic Core.
Front Plant Sci. 2019 Feb 7;10:108. doi: 10.3389/fpls.2019.00108. eCollection 2019.
8
Evidence for a second regulatory binding site on PspF that is occupied by the C-terminal domain of PspA.
PLoS One. 2018 Jun 15;13(6):e0198564. doi: 10.1371/journal.pone.0198564. eCollection 2018.
9
Association of Mycobacterium Proteins with Lipid Droplets.
J Bacteriol. 2018 Jul 25;200(16). doi: 10.1128/JB.00240-18. Print 2018 Aug 15.
10
Evaluating the role of phage-shock protein A in Burkholderia pseudomallei.
Microbiology (Reading). 2015 Nov;161(11):2192-203. doi: 10.1099/mic.0.000175. Epub 2015 Sep 14.

本文引用的文献

1
Structural insights into the activity of enhancer-binding proteins.
Science. 2005 Mar 25;307(5717):1972-5. doi: 10.1126/science.1105932.
2
Identification of a new member of the phage shock protein response in Escherichia coli, the phage shock protein G (PspG).
J Biol Chem. 2004 Dec 31;279(53):55707-14. doi: 10.1074/jbc.M408994200. Epub 2004 Oct 13.
3
Novel phenotypes of Escherichia coli tat mutants revealed by global gene expression and phenotypic analysis.
J Biol Chem. 2004 Nov 12;279(46):47543-54. doi: 10.1074/jbc.M406910200. Epub 2004 Aug 30.
4
PspG, a new member of the Yersinia enterocolitica phage shock protein regulon.
J Bacteriol. 2004 Aug;186(15):4910-20. doi: 10.1128/JB.186.15.4910-4920.2004.
5
Complex formation of Vipp1 depends on its alpha-helical PspA-like domain.
J Biol Chem. 2004 Aug 20;279(34):35535-41. doi: 10.1074/jbc.M401750200. Epub 2004 Jun 21.
7
ATP-dependent transcriptional activation by bacterial PspF AAA+protein.
J Mol Biol. 2004 May 14;338(5):863-75. doi: 10.1016/j.jmb.2004.02.071.
9
Global impact of mature biofilm lifestyle on Escherichia coli K-12 gene expression.
Mol Microbiol. 2004 Feb;51(3):659-74. doi: 10.1046/j.1365-2958.2003.03865.x.
10
Phage shock protein PspA of Escherichia coli relieves saturation of protein export via the Tat pathway.
J Bacteriol. 2004 Jan;186(2):366-73. doi: 10.1128/JB.186.2.366-373.2004.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验