Suppr超能文献

RESTORE:通过离群值剔除进行张量的稳健估计。

RESTORE: robust estimation of tensors by outlier rejection.

作者信息

Chang Lin-Ching, Jones Derek K, Pierpaoli Carlo

机构信息

Section on Tissue Biophysics and Biomimetics, Laboratory of Integrative Medicine and Biophysics, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA.

出版信息

Magn Reson Med. 2005 May;53(5):1088-95. doi: 10.1002/mrm.20426.

Abstract

Signal variability in diffusion weighted imaging (DWI) is influenced by both thermal noise and spatially and temporally varying artifacts such as subject motion and cardiac pulsation. In this paper, the effects of DWI artifacts on estimated tensor values, such as trace and fractional anisotropy, are analyzed using Monte Carlo simulations. A novel approach for robust diffusion tensor estimation, called RESTORE (for robust estimation of tensors by outlier rejection), is proposed. This method uses iteratively reweighted least-squares regression to identify potential outliers and subsequently exclude them. Results from both simulated and clinical diffusion data sets indicate that the RESTORE method improves tensor estimation compared to the commonly used linear and nonlinear least-squares tensor fitting methods and a recently proposed method based on the Geman-McClure M-estimator. The RESTORE method could potentially remove the need for cardiac gating in DWI acquisitions and should be applicable to other MR imaging techniques that use univariate or multivariate regression to fit MRI data to a model.

摘要

扩散加权成像(DWI)中的信号变异性受热噪声以及空间和时间上变化的伪影(如受试者运动和心脏搏动)影响。本文使用蒙特卡罗模拟分析了DWI伪影对估计张量值(如迹和分数各向异性)的影响。提出了一种用于稳健扩散张量估计的新方法,称为RESTORE(通过异常值拒绝稳健估计张量)。该方法使用迭代加权最小二乘回归来识别潜在的异常值并随后将其排除。模拟和临床扩散数据集的结果表明,与常用的线性和非线性最小二乘张量拟合方法以及最近提出的基于Geman-McClure M估计器的方法相比,RESTORE方法改善了张量估计。RESTORE方法可能无需在DWI采集中进行心脏门控,并且应适用于使用单变量或多变量回归将MRI数据拟合到模型的其他MR成像技术。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验