Keenan D Barry, Wilhelm Frank H
VivoMetrics, Inc. 121 N. Fir Street, Ventura, CA 93001, USA.
Biomed Sci Instrum. 2005;41:329-34.
The number of steps per time period is an important ambulatory measure describing an individual's locomotor function with implications for psychological and physical health. Key applications in neurology, psychiatry, psychopharmacology, and sports, behavior or rehabilitation medicine make it desirable to improve step detecting devices. Several pedometer or wrist actigraphy monitors exist today, but are insensitive or confounded by movement style, which may vary for different diagnoses and applications. Presented is an algorithm that detects, classifies and counts steps related to walking, running and shuffling motion. Data is recorded using a novel ambulatory monitoring system (LifeShirt, VivoMetrics, Inc., Ventura, CA, USA) which captures breathing information from respiratory inductive plethysmography (RIP) sensors embedded in a light garment, and acceleration signals from a dual axis accelerometer attached close to the center of body mass. The vertical accelerometer axis measures upward acceleration generated by walking and running, while the other axis measures movement common with shuffling gait. Since these signals often contain noise and artifact due to soft tissue movement or external vibrations they are filtered and autocorrelated using unbiased estimates. The autocorrelation coefficients allow for clearer detection and classification of the cyclic motion during walking, running and shuffling movements. The algorithm is tested during various levels of exercise in healthy individuals and patients suffering from Parkinson disease, which is often characterized by shuffling gait. The results demonstrate an effective locomotor-monitoring algorithm that can produce accurate estimates of frequency and intensity of steps and shuffles and help classify daily locomotor activities.
每个时间段的步数是一项重要的动态指标,用于描述个体的运动功能,对心理和身体健康都有影响。在神经病学、精神病学、精神药理学以及运动、行为或康复医学等领域的关键应用,使得改进步数检测设备成为必要。如今有几种计步器或手腕活动记录仪,但它们对运动方式不敏感或容易混淆,而运动方式可能因不同的诊断和应用而有所不同。本文介绍了一种算法,该算法可检测、分类并计算与行走、跑步和拖着脚走相关的步数。数据使用一种新型的动态监测系统(LifeShirt,VivoMetrics公司,美国加利福尼亚州文图拉)进行记录,该系统通过嵌入轻便衣物中的呼吸感应体积描记法(RIP)传感器捕捉呼吸信息,并通过附着在靠近身体质量中心的双轴加速度计获取加速度信号。垂直加速度计轴测量行走和跑步产生的向上加速度,而另一个轴测量与拖着脚走步态相关的运动。由于这些信号常常因软组织运动或外部振动而包含噪声和伪迹,因此使用无偏估计对其进行滤波和自相关处理。自相关系数有助于更清晰地检测和分类行走、跑步和拖着脚走运动期间的周期性运动。该算法在健康个体以及患有帕金森病(通常以拖着脚走步态为特征)的患者的不同运动水平下进行了测试。结果证明了一种有效的运动监测算法,该算法可以准确估计步数和拖着脚走的频率及强度,并有助于对日常运动活动进行分类。