Suppr超能文献

农业工作时间表中的不确定性对除草剂流域尺度径流模型分析中模型输入的影响及蒙特卡洛评估

Effect of uncertainties in agricultural working schedules and Monte-Carlo evaluation of the model input in basin-scale runoff model analysis of herbicides.

作者信息

Matsui Y, Inoue T, Matsushita T, Yamada T, Yamamoto M, Sumigama Y

机构信息

Department of Civil Engineering, Gifu University, 501-1193, Japan.

出版信息

Water Sci Technol. 2005;51(3-4):329-37.

Abstract

In the prediction of time-series concentrations of herbicides in river water with diffuse-pollution hydrological models, farming schedules (the dates of herbicide application and drainage of irrigation water from rice paddies) greatly affect the runoff behavior of the herbicides. For large catchments, obtaining precise data on farming schedules is impractical, and so the model input inevitably includes substantial uncertainty. This paper evaluates the effectiveness of using the Monte-Carlo method to generate sets of estimated farming schedules to use as input to a GIS-based basin-scale runoff model to predict the concentrations of paddy-farming herbicides in river water. The effects of using the Monte-Carlo method to compensate for uncertainty in the evaluated parameters for herbicide decomposition and sorption were also evaluated.

摘要

在利用分散污染水文模型预测河水中除草剂的时间序列浓度时,农事安排(除草剂施用日期以及稻田灌溉水的排水日期)对除草剂的径流行为有很大影响。对于大型集水区而言,获取农事安排的精确数据是不切实际的,因此模型输入不可避免地包含大量不确定性。本文评估了使用蒙特卡洛方法生成估计农事安排集的有效性,这些农事安排集将作为基于地理信息系统的流域尺度径流模型的输入,用于预测河水中稻田除草剂的浓度。同时还评估了使用蒙特卡洛方法补偿除草剂分解和吸附评估参数不确定性的效果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验