Suppr超能文献

利用傅里叶变换红外光谱法和化学计量学检测苹果汁中的掺糖物质。

Detection of sugar adulterants in apple juice using fourier transform infrared spectroscopy and chemometrics.

作者信息

Kelly J F Daniel, Downey Gerard

机构信息

Teagasc, The National Food Centre, Ashtown, Dublin 15, Ireland.

出版信息

J Agric Food Chem. 2005 May 4;53(9):3281-6. doi: 10.1021/jf048000w.

Abstract

Fourier transform infrared spectroscopy and attenuated total reflection sampling have been used to detect adulteration of single strength apple juice samples. The sample set comprised 224 authentic apple juices and 480 adulterated samples. Adulterants used included partially inverted cane syrup (PICS), beet sucrose (BS), high fructose corn syrup (HFCS), and a synthetic solution of fructose, glucose, and sucrose (FGS). Adulteration was carried out on individual apple juice samples at levels of 10, 20, 30, and 40% w/w. Spectral data were compressed by principal component analysis and analyzed using k-nearest neighbors and partial least squares regression techniques. Prediction results for the best classification models achieved an overall (authentic plus adulterated) correct classification rate of 96.5, 93.9, 92.2, and 82.4% for PICS, BS, HFCS, and FGS adulterants, respectively. This method shows promise as a rapid screening technique for the detection of a broad range of potential adulterants in apple juice.

摘要

傅里叶变换红外光谱法和衰减全反射采样法已被用于检测单浓度苹果汁样品的掺假情况。样品集包括224个纯正苹果汁和480个掺假样品。所用的掺假物包括部分转化的甘蔗糖浆(PICS)、甜菜蔗糖(BS)、高果糖玉米糖浆(HFCS)以及果糖、葡萄糖和蔗糖的合成溶液(FGS)。对单个苹果汁样品进行掺假处理,掺假水平分别为10%、20%、30%和40%(重量/重量)。光谱数据通过主成分分析进行压缩,并使用k近邻和偏最小二乘回归技术进行分析。最佳分类模型的预测结果显示,对于PICS、BS、HFCS和FGS掺假物,总体(纯正加掺假)正确分类率分别为96.5%、93.9%、92.2%和82.4%。该方法有望成为一种快速筛选技术,用于检测苹果汁中广泛的潜在掺假物。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验