Jänis Janne, Hakanpää Johanna, Hakulinen Nina, Ibatullin Farid M, Hoxha Antuan, Derrick Peter J, Rouvinen Juha, Vainiotalo Pirjo
Department of Chemistry, University of Joensuu, Finland.
FEBS J. 2005 May;272(9):2317-33. doi: 10.1111/j.1742-4658.2005.04659.x.
Noncovalent binding of thioxylo-oligosaccharide inhibitors, methyl 4-thio-alpha-xylobioside (S-Xyl2-Me), methyl 4,4II-dithio-alpha-xylotrioside (S-Xyl3-Me), methyl 4,4II,4III-trithio-alpha-xylotetroside (S-Xyl4-Me), and methyl 4,4II,4III,4IV-tetrathio-alpha-xylopentoside (S-Xyl5-Me), to three family 11 endo-1,4-beta-xylanases from Trichoderma reesei (TRX I and TRX II) and Chaetomium thermophilum (CTX) was characterized using electrospray ionization Fourier transform ion cyclotron resonance (FT-ICR) MS and X-ray crystallography. Ultra-high mass-resolving power and mass accuracy inherent to FT-ICR allowed mass measurements for noncovalent complexes to within |DeltaM|average of 2 p.p.m. The binding constants determined by MS titration experiments were in the range 10(4)-10(3) M-1, decreasing in the series of S-Xyl5-Me>or=S-Xyl4-Me>S-Xyl3-Me. In contrast, S-Xyl2-Me did not bind to any xylanase at the initial concentration of 5-200 microM, indicating increasing affinity with increasing number of xylopyranosyl units, with a minimum requirement of three. The crystal structures of CTX-inhibitor complexes gave interesting insights into the binding. Surprisingly, none of the inhibitors occupied any of the aglycone subsites of the active site. The binding to only the glycone subsites is nonproductive for catalysis, and yet this has also been observed for other family 11 xylanases in complex with beta-d-xylotetraose [Wakarchuk WW, Campbell RL, Sung WL, Davoodi J & Makoto Y (1994) Protein Sci3, 465-475, and Sabini E, Wilson KS, Danielsen S, Schulein M & Davies GJ (2001) Acta CrystallogrD57, 1344-1347]. Therefore, the role of the aglycone subsites remains controversial despite their obvious contribution to catalysis.
利用电喷雾电离傅里叶变换离子回旋共振(FT-ICR)质谱和X射线晶体学对硫代木糖寡糖抑制剂甲基4-硫代-α-木二糖苷(S-Xyl2-Me)、甲基4,4''-二硫代-α-木三糖苷(S-Xyl3-Me)、甲基4,4'',4''' -三硫代-α-木四糖苷(S-Xyl4-Me)和甲基4,4'',4''',4''''-四硫代-α-木五糖苷(S-Xyl5-Me)与里氏木霉(TRX I和TRX II)和嗜热毛壳菌(CTX)的三种11家族内切-1,4-β-木聚糖酶的非共价结合进行了表征。FT-ICR固有的超高质量分辨能力和质量精度使得非共价复合物的质量测量误差平均在|ΔM|为2 ppm以内。通过质谱滴定实验确定的结合常数在10⁴ - 10³ M⁻¹范围内,在S-Xyl5-Me≥S-Xyl4-Me>S-Xyl3-Me系列中递减。相比之下,在5 - 200 μM的初始浓度下,S-Xyl2-Me不与任何木聚糖酶结合,这表明随着木吡喃糖基单元数量的增加亲和力增强,且至少需要三个单元。CTX-抑制剂复合物的晶体结构为这种结合提供了有趣的见解。令人惊讶的是,没有一种抑制剂占据活性位点的任何糖苷配基亚位点。仅与糖基亚位点结合对催化是无效的,但在与β-d-木四糖复合的其他11家族木聚糖酶中也观察到了这种情况[Wakarchuk WW, Campbell RL, Sung WL, Davoodi J & Makoto Y (1994) Protein Sci3, 465 - 475,以及Sabini E, Wilson KS, Danielsen S, Schulein M & Davies GJ (2001) Acta CrystallogrD57, 1344 - 1347]。因此,尽管糖苷配基亚位点对催化有明显贡献,但其作用仍存在争议。