Mello Bruno L, Alessi Anna M, Riaño-Pachón Diego M, deAzevedo Eduardo R, Guimarães Francisco E G, Espirito Santo Melissa C, McQueen-Mason Simon, Bruce Neil C, Polikarpov Igor
Instituto de Física de São Carlos, Universidade de São Paulo, Av. Trabalhador São-carlense 400, São Carlos, SP 13560-970 Brazil.
Department of Biology, University of York, Wentworth Way, York, YO10 5DD UK.
Biotechnol Biofuels. 2017 Nov 2;10:254. doi: 10.1186/s13068-017-0944-4. eCollection 2017.
Using globally abundant crop residues as a carbon source for energy generation and renewable chemicals production stand out as a promising solution to reduce current dependency on fossil fuels. In nature, such as in compost habitats, microbial communities efficiently degrade the available plant biomass using a diverse set of synergistic enzymes. However, deconstruction of lignocellulose remains a challenge for industry due to recalcitrant nature of the substrate and the inefficiency of the enzyme systems available, making the economic production of lignocellulosic biofuels difficult. Metatranscriptomic studies of microbial communities can unveil the metabolic functions employed by lignocellulolytic consortia and identify novel biocatalysts that could improve industrial lignocellulose conversion.
In this study, a microbial community from compost was grown in minimal medium with sugarcane bagasse sugarcane bagasse as the sole carbon source. Solid-state nuclear magnetic resonance was used to monitor lignocellulose degradation; analysis of metatranscriptomic data led to the selection and functional characterization of several target genes, revealing the first glycoside hydrolase from Carbohydrate Active Enzyme family 11 with exo-1,4-β-xylanase activity. The xylanase crystal structure was resolved at 1.76 Å revealing the structural basis of exo-xylanase activity. Supplementation of a commercial cellulolytic enzyme cocktail with the xylanase showed improvement in Avicel hydrolysis in the presence of inhibitory xylooligomers.
This study demonstrated that composting microbiomes continue to be an excellent source of biotechnologically important enzymes by unveiling the diversity of enzymes involved in in situ lignocellulose degradation.
利用全球丰富的农作物残余物作为能源生产和可再生化学品生产的碳源,是减少当前对化石燃料依赖的一个有前景的解决方案。在自然界中,比如在堆肥环境中,微生物群落利用多种协同酶有效地降解可用的植物生物质。然而,由于底物的顽固性和现有酶系统的低效性,木质纤维素的解构对工业来说仍然是一个挑战,这使得木质纤维素生物燃料的经济生产变得困难。对微生物群落的宏转录组学研究可以揭示木质纤维素分解菌群所采用的代谢功能,并鉴定出可以改善工业木质纤维素转化的新型生物催化剂。
在本研究中,一个来自堆肥的微生物群落在以甘蔗渣为唯一碳源的基本培养基中生长。利用固态核磁共振监测木质纤维素的降解;对宏转录组学数据的分析导致了几个靶基因的筛选和功能表征,揭示了第一个来自碳水化合物活性酶家族11的具有外切-1,4-β-木聚糖酶活性的糖苷水解酶。木聚糖酶晶体结构在1.76 Å分辨率下解析,揭示了外切木聚糖酶活性的结构基础。在商业纤维素分解酶混合物中添加木聚糖酶,在存在抑制性木寡糖的情况下,显示出对微晶纤维素水解的改善。
本研究通过揭示参与原位木质纤维素降解的酶的多样性,证明堆肥微生物群落仍然是生物技术重要酶的优秀来源。