Conant Clarke R, Van Gilst Marc R, Weitzel Stephen E, Rees William A, von Hippel Peter H
Institute of Molecular Biology and Department of Chemistry, University of Oregon, Eugene, OR 97403, USA.
J Mol Biol. 2005 May 20;348(5):1039-57. doi: 10.1016/j.jmb.2005.03.042. Epub 2005 Apr 1.
The N protein of bacteriophage lambda activates transcription of genes that lie downstream of termination sequences by suppressing transcription termination. N binds to specific (boxB) and non-specific sites on the transcript RNA and contacts RNA polymerase via cis-RNA looping, resulting in "antitermination" of transcription. To find the effect of N-boxB binding on antitermination, we quantitatively relate binding measurements made in isolation to in vitro antitermination activity. We measure binding of N to boxB RNA, non-specific single-stranded RNA, and non-specific double-stranded DNA fluorimetrically, and use an equilibrium model to describe quantitatively the binding of N to nucleic acids of Escherichia coli transcription elongation complexes. We then test the model by comparison with in vitro N antitermination activity measured in reactions containing these same elongation complexes. We find that binding of N protein to the nucleic acid components of transcription elongation complexes can quantitatively predict antitermination activity, suggesting that antitermination in vitro is determined by a nucleic acid binding equilibrium with one molecule of N protein per RNA transcript being sufficient for antitermination. Elongation complexes contain numerous overlapping non-specific RNA and DNA-binding sites for N; the large number of sites compensates for the low N binding affinity, so multiple N proteins are expected to bind to elongation complexes. The occupancy/activity of these proteins is described by a binomial distribution of proteins on transcripts containing multiple non-specific sites. The contribution of specific (boxB) binding to activity also depends on this distribution. Specificity is not measured accurately by measurements made in the presence and in the absence of boxB. We find that antitermination is inhibited by non-productive binding of N to non-specific sites on template DNA, and that NusA protein covers RNA sites on the transcript, limiting N access and activity. The activity and specificity of regulatory proteins that loop from high-affinity binding sites are likely modulated by multiple non-specific binding events; in vivo activity may also be regulated by the modulation of non-specific binding.
噬菌体λ的N蛋白通过抑制转录终止来激活终止序列下游基因的转录。N蛋白与转录RNA上的特定(boxB)和非特定位点结合,并通过顺式RNA环化与RNA聚合酶接触,从而导致转录的“抗终止”。为了探究N-boxB结合对抗终止的影响,我们将单独进行的结合测量与体外抗终止活性进行了定量关联。我们通过荧光法测量N与boxB RNA、非特异性单链RNA和非特异性双链DNA的结合,并使用平衡模型定量描述N与大肠杆菌转录延伸复合物核酸的结合。然后,我们通过与在含有这些相同延伸复合物的反应中测量的体外N抗终止活性进行比较来测试该模型。我们发现N蛋白与转录延伸复合物核酸成分的结合可以定量预测抗终止活性,这表明体外抗终止是由核酸结合平衡决定的,每个RNA转录本有一个N蛋白分子就足以实现抗终止。延伸复合物包含大量重叠的N蛋白非特异性RNA和DNA结合位点;大量的位点弥补了N蛋白低结合亲和力的不足,因此预计多个N蛋白会与延伸复合物结合。这些蛋白质的占有率/活性由蛋白质在含有多个非特异性位点的转录本上的二项分布来描述。特异性(boxB)结合对活性的贡献也取决于这种分布。在有和没有boxB的情况下进行的测量并不能准确测量特异性。我们发现N蛋白与模板DNA上的非特异性位点的非生产性结合会抑制抗终止,并且NusA蛋白覆盖转录本上的RNA位点,限制了N蛋白的接近和活性。从高亲和力结合位点环化的调节蛋白的活性和特异性可能受到多个非特异性结合事件的调节;体内活性也可能通过非特异性结合的调节来调控。