Horenko Illia, Lorenz Sönke, Schütte Christof, Huisinga Wilhelm
Freie Universität Berlin, Arnimallee 2, D-14195 Berlin, Germany.
J Comput Chem. 2005 Jul 15;26(9):941-8. doi: 10.1002/jcc.20234.
We present a unified approach for linear and nonlinear sensitivity analysis for models of reaction kinetics that are stated in terms of systems of ordinary differential equations (ODEs). The approach is based on the reformulation of the ODE problem as a density transport problem described by a Fokker-Planck equation. The resulting multidimensional partial differential equation is herein solved by extending the TRAIL algorithm originally introduced by Horenko and Weiser in the context of molecular dynamics (J. Comp. Chem. 2003, 24, 1921) and discussed it in comparison with Monte Carlo techniques. The extended TRAIL approach is fully adaptive and easily allows to study the influence of nonlinear dynamical effects. We illustrate the scheme in application to an enzyme-substrate model problem for sensitivity analysis w.r.t. to initial concentrations and parameter values.
我们提出了一种统一的方法,用于对以常微分方程(ODE)系统表述的反应动力学模型进行线性和非线性灵敏度分析。该方法基于将ODE问题重新表述为一个由福克 - 普朗克方程描述的密度输运问题。通过扩展最初由霍伦科和魏泽尔在分子动力学背景下引入的TRAIL算法(《计算化学杂志》2003年,第24卷,第1921页),并与蒙特卡罗技术进行比较,在此求解由此产生的多维偏微分方程。扩展后的TRAIL方法具有完全的自适应性,并且能够轻松地研究非线性动力学效应的影响。我们通过将该方案应用于一个酶 - 底物模型问题,以说明其对初始浓度和参数值的灵敏度分析。