Suppr超能文献

使用矩方程和扩展卡尔曼滤波器对生化网络的确定性模型进行不确定性传播。

Uncertainty propagation for deterministic models of biochemical networks using moment equations and the extended Kalman filter.

机构信息

Molecular Systems Biology, Groningen Biomolecular Sciences & Biotechnology Institute, University of Groningen, Groningen, Netherlands.

出版信息

J R Soc Interface. 2021 Aug;18(181):20210331. doi: 10.1098/rsif.2021.0331. Epub 2021 Aug 4.

Abstract

Differential equation models of biochemical networks are frequently associated with a large degree of uncertainty in parameters and/or initial conditions. However, estimating the impact of this uncertainty on model predictions via Monte Carlo simulation is computationally demanding. A more efficient approach could be to track a system of low-order statistical moments of the state. Unfortunately, when the underlying model is nonlinear, the system of moment equations is infinite-dimensional and cannot be solved without a moment closure approximation which may introduce bias in the moment dynamics. Here, we present a new method to study the time evolution of the desired moments for nonlinear systems with polynomial rate laws. Our approach is based on solving a system of low-order moment equations by substituting the higher-order moments with Monte Carlo-based estimates from a small number of simulations, and using an extended Kalman filter to counteract Monte Carlo noise. Our algorithm provides more accurate and robust results compared to traditional Monte Carlo and moment closure techniques, and we expect that it will be widely useful for the quantification of uncertainty in biochemical model predictions.

摘要

生化网络的微分方程模型通常与参数和/或初始条件的高度不确定性相关。然而,通过蒙特卡罗模拟来估计这种不确定性对模型预测的影响在计算上是很耗费资源的。一种更有效的方法可能是跟踪系统状态的低阶统计矩。不幸的是,当基础模型是非线性时,矩方程系统是无限维的,而没有矩闭合近似就无法求解,这可能会导致矩动力学出现偏差。在这里,我们提出了一种新的方法来研究具有多项式速率定律的非线性系统所需矩的时间演化。我们的方法基于通过用来自少数模拟的基于蒙特卡罗的估计值替代高阶矩来求解低阶矩方程,并使用扩展卡尔曼滤波器来抵消蒙特卡罗噪声。与传统的蒙特卡罗和矩闭合技术相比,我们的算法提供了更准确和更稳健的结果,我们预计它将广泛用于量化生化模型预测中的不确定性。

相似文献

2
Binomial moment equations for stochastic reaction systems.二项式矩方程用于随机反应系统。
Phys Rev Lett. 2011 Apr 15;106(15):150602. doi: 10.1103/PhysRevLett.106.150602. Epub 2011 Apr 13.

引用本文的文献

本文引用的文献

6
Efficient Characterization of Parametric Uncertainty of Complex (Bio)chemical Networks.复杂(生物)化学网络参数不确定性的有效表征
PLoS Comput Biol. 2015 Aug 28;11(8):e1004457. doi: 10.1371/journal.pcbi.1004457. eCollection 2015 Aug.
7
Role of functionality in two-component signal transduction: a stochastic study.功能在双组分信号转导中的作用:一项随机研究。
Phys Rev E Stat Nonlin Soft Matter Phys. 2014 Mar;89(3):032713. doi: 10.1103/PhysRevE.89.032713. Epub 2014 Mar 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验