Krebs Carsten, Price John C, Baldwin Jeffrey, Saleh Lana, Green Michael T, Bollinger J Martin
Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA.
Inorg Chem. 2005 Feb 21;44(4):742-57. doi: 10.1021/ic048523l.
Nuclear gamma resonance spectroscopy, also known as Mössbauer spectroscopy, is a technique that probes transitions between the nuclear ground state and a low-lying nuclear excited state. The nucleus most amenable to Mössbauer spectroscopy is 57Fe, and 57Fe Mössbauer spectroscopy provides detailed information about the chemical environment and electronic structure of iron. Iron is by far the most structurally and functionally diverse metal ion in biology, and 57Fe Mössbauer spectroscopy has played an important role in the elucidation of its biochemistry. In this article, we give a brief introduction to the technique and then focus on two recent exciting developments pertaining to the application of 57Fe Mössbauer spectroscopy in biochemistry. The first is the use of the rapid freeze-quench method in conjunction with Mössbauer spectroscopy to monitor changes at the Fe site during a biochemical reaction. This method has allowed for trapping and subsequent detailed spectroscopic characterization of reactive intermediates and thus has provided unique insight into the reaction mechanisms of Fe-containing enzymes. We outline the methodology using two examples: (1) oxygen activation by the non-heme diiron enzymes and (2) oxygen activation by taurine:alpha-ketoglutarate dioxygenase (TauD). The second development concerns the calculation of Mössbauer parameters using density functional theory (DFT) methods. By using the example of TauD, we show that comparison of experimental Mössbauer parameters with those obtained from calculations on model systems can be used to provide insight into the structure of a reaction intermediate.
核伽马共振光谱学,也称为穆斯堡尔光谱学,是一种探测原子核基态与低能核激发态之间跃迁的技术。最适合穆斯堡尔光谱学研究的原子核是57Fe,57Fe穆斯堡尔光谱学提供了有关铁的化学环境和电子结构的详细信息。铁是生物学中结构和功能最多样化的金属离子,57Fe穆斯堡尔光谱学在阐明其生物化学过程中发挥了重要作用。在本文中,我们简要介绍了该技术,然后重点介绍了与57Fe穆斯堡尔光谱学在生物化学中的应用相关的两个近期令人兴奋的进展。第一个是将快速冷冻淬灭方法与穆斯堡尔光谱学结合使用,以监测生化反应过程中铁位点的变化。这种方法能够捕获反应中间体并对其进行后续详细的光谱表征,从而为含铁血酶的反应机制提供了独特的见解。我们用两个例子概述了该方法:(1)非血红素双铁酶的氧活化和(2)牛磺酸:α-酮戊二酸双加氧酶(TauD)的氧活化。第二个进展涉及使用密度泛函理论(DFT)方法计算穆斯堡尔参数。通过以TauD为例,我们表明将实验穆斯堡尔参数与从模型系统计算中获得的参数进行比较,可用于深入了解反应中间体的结构。