Suppr超能文献

预测微孔曝气系统的氧气传递——基于量纲分析的模型

Predicting oxygen transfer of fine bubble diffused aeration systems--model issued from dimensional analysis.

作者信息

Gillot S, Capela-Marsal S, Roustan M, Héduit A

机构信息

Cemagref, Parc de Tourvoie BP 44, 92163 Antony cedex, France.

出版信息

Water Res. 2005 Apr;39(7):1379-87. doi: 10.1016/j.watres.2005.01.008.

Abstract

The standard oxygenation performances of fine bubble diffused aeration systems in clean water, measured in 12 cylindrical tanks (water depth from 2.4 to 6.1m), were analysed using dimensional analysis. A relationship was established to estimate the scale-up factor for oxygen transfer, the transfer number (N(T)) The transfer number, which is written as a function of the oxygen transfer coefficient (k(L)a(20)), the gas superficial velocity (U(G)), the kinematic viscosity of water (nu) and the acceleration due to gravity (g), has the same physical meaning as the specific oxygen transfer efficiency. N(T) only depends on the geometry of the tank/aeration system [the total surface of the perforated membrane (S(p)), the surface of the tank (S) or its diameter (D), the total surface of the zones covered by the diffusers ("aerated area", S(a)) and the submergence of the diffusers (h)]. This analysis allowed to better describe the mass transfer in cylindrical tanks. Within the range of the parameters considered, the oxygen transfer coefficient (k(L)a(20)) is an increasing linear function of the air flow rate. For a given air flow rate and a given tank surface area, k(L)a(20) decreases with the water depth (submergence of the diffusers). For a given water depth, k(L)a(20) increases with the number of diffusers, and, for an equal number of diffusers, with the total area of the zones covered by the diffusers. The latter result evidences the superiority of the total floor coverage over an arrangement whereby the diffusers are placed on separate grids. The specific standard oxygen transfer efficiency is independent of the air flow rate and the water depth, the drop in the k(L)a(20) being offset by the increase of the saturation concentration. For a given tank area, the impact of the total surface of the perforated membrane (S(p)) and of the aerated area (S(a)) is the same as on the oxygen transfer coefficient.

摘要

在12个圆柱形水箱(水深2.4至6.1米)中测量了微气泡扩散曝气系统在清水中的标准充氧性能,并采用量纲分析进行了分析。建立了一种关系来估算氧转移的放大系数,即转移数(N(T))。转移数写成氧转移系数(k(L)a(20))、气体表观速度(U(G))、水的运动粘度(ν)和重力加速度(g)的函数,其物理意义与比氧转移效率相同。N(T)仅取决于水箱/曝气系统的几何形状[穿孔膜的总表面积(S(p))、水箱的表面积(S)或其直径(D)、扩散器覆盖区域的总表面积(“曝气面积”,S(a))以及扩散器的浸没深度(h)]。该分析有助于更好地描述圆柱形水箱中的传质情况。在所考虑的参数范围内,氧转移系数(k(L)a(20))是空气流量的递增线性函数。对于给定的空气流量和给定的水箱表面积,k(L)a(20)随水深(扩散器的浸没深度)而降低。对于给定的水深,k(L)a(20)随扩散器数量的增加而增加,并且对于相同数量的扩散器,随扩散器覆盖区域的总面积增加而增加。后一结果证明了全面覆盖地面优于将扩散器放置在单独网格上的布置方式。比标准氧转移效率与空气流量和水深无关,k(L)a(20)的下降被饱和浓度的增加所抵消。对于给定的水箱面积,穿孔膜的总表面积(S(p))和曝气面积(S(a))的影响与对氧转移系数的影响相同。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验