Schierholz Erica L, Gulliver John S, Wilhelms Steven C, Henneman Heather E
Brown and Caldwell, 30 East 7th Street, Suite 2500, St. Paul, MN 55101, USA.
Water Res. 2006 Mar;40(5):1018-26. doi: 10.1016/j.watres.2005.12.033.
The bubble and surface volumetric mass transfer coefficients for oxygen, k(L)a(b) and k(L)a(s), are separately determined for 179 aeration tests, with diffuser depths ranging from 2.25 to 32 m, using the DeMoyer et al. 12003. Impact of bubble and free surface oxygen transfer on diffused aeration systems. Water Res 37, 1890-1904] mass transfer model. Two empirical characterization equations are developed for k(L)a(b) and k(L)a(s), correlating the coefficients to air flow, Qa, diffuser depth, hd, cross-sectional area, Acs, and volume, V. The characterization equations indicate that the bubble transfer coefficient, k(L)a(b), increases with increasing gas flow rate and depth, and decreases with increasing water volume. For fine bubble diffusers, k(L)a(b) is approximately six times greater than k(L)a(b) for coarse bubble diffusers. The surface transfer coefficient, k(L)A(s), increases with increasing gas flow rate and diffuser depth. The characterization equations make it possible to predict the gas transfer that will occur across bubble interfaces and across the free surface with a bubble plume at depths up to 32 m and with variable air discharge in deep tanks and reservoirs.
使用DeMoyer等人[2003年。气泡和自由表面氧气转移对曝气系统的影响。《水研究》37,1890 - 1904]的传质模型,针对179次曝气试验分别测定了氧气的气泡和表面体积传质系数k(L)a(b)和k(L)a(s),扩散器深度范围为2.25至32米。针对k(L)a(b)和k(L)a(s)建立了两个经验表征方程,将这些系数与空气流量Qa、扩散器深度hd、横截面积Acs和体积V关联起来。表征方程表明,气泡传质系数k(L)a(b)随气体流速和深度的增加而增加,随水量的增加而减小。对于微孔曝气器,k(L)a(b)大约是粗孔曝气器的k(L)a(b)的六倍。表面传质系数k(L)a(s)随气体流速和扩散器深度的增加而增加。这些表征方程使得能够预测在深度达32米、气流量可变的深水池和水库中,通过气泡界面以及带有气泡羽流的自由表面所发生的气体转移。