Salluzzi Marina, Frayne Richard, Smith Michael R
Electrical and Computer Engineering, University of Calgary, Calgary, Alberta, Canada T2N 1N4.
Magn Reson Imaging. 2005 Apr;23(3):481-92. doi: 10.1016/j.mri.2004.12.001.
Quantitative cerebral blood flow (CBF) values can be determined from residue function estimates obtained from magnetic resonance dynamic susceptibility contrast (DSC) perfusion studies using a variety of deconvolution approaches. However, there are significant differences between the CBF estimates obtained, differences that are not simply due to minor details of the implementation of the algorithms. The standard singular value decomposition (sSVD) shows a variation of CBF values with arterial-tissue delay (ATD) not present with the Fourier transform deconvolution algorithm. Fourier transform deconvolution and the newly suggested delay-invariant SVD algorithm implementations provide CBF estimates whose accuracy changes with tissue mean transit times (MTTs). Techniques combining sSVD with deliberate ATD manipulation have been proposed to compensate for this inaccuracy. Other studies indicate that CBF changes related to slice position in a multislice study, and other experimental factors, can be reduced using interpolative deconvolution algorithms. In this review, we use both time-domain and frequency-domain analysis to show the underlying theoretical relationships between these many approaches to obtain "the best" CBF estimate. This model allows us to better understand the similarities and differences, advantages and disadvantages between these variants of the deconvolution algorithms used in DSC perfusion studies.
定量脑血流量(CBF)值可通过多种反卷积方法,从磁共振动态磁敏感对比(DSC)灌注研究获得的残差函数估计值中确定。然而,所获得的CBF估计值之间存在显著差异,这些差异并非仅仅源于算法实现的细微细节。标准奇异值分解(sSVD)显示,CBF值随动脉-组织延迟(ATD)而变化,而傅里叶变换反卷积算法则不存在这种情况。傅里叶变换反卷积和新提出的延迟不变SVD算法实现所提供的CBF估计值,其准确性会随组织平均通过时间(MTT)而变化。已提出将sSVD与刻意的ATD操作相结合的技术来补偿这种不准确性。其他研究表明,在多层研究中,使用插值反卷积算法可以减少与切片位置及其他实验因素相关的CBF变化。在本综述中,我们使用时域和频域分析来展示这些获取“最佳”CBF估计值的多种方法之间的潜在理论关系。该模型使我们能够更好地理解DSC灌注研究中使用的反卷积算法这些变体之间的异同、优缺点。