Wagenseil Jessica E, Nerurkar Nandan L, Knutsen Russell H, Okamoto Ruth J, Li Dean Y, Mecham Robert P
Department of Cell Biology and Physiology, CB 8228, Washington University School of Medicine, 660 S. Euclid, St. Louis, MO 63110, USA.
Am J Physiol Heart Circ Physiol. 2005 Sep;289(3):H1209-17. doi: 10.1152/ajpheart.00046.2005. Epub 2005 Apr 29.
Supravalvular aortic stenosis (SVAS) is associated with decreased elastin and altered arterial mechanics. Mice with a single deletion in the elastin gene (ELN(+/-)) are models for SVAS. Previous studies have shown that elastin haploinsufficiency in these mice causes hypertension, decreased arterial compliance, and changes in arterial wall structure. Despite these differences, ELN(+/-) mice have a normal life span, suggesting that the arteries remodel and adapt to the decreased amount of elastin. To test this hypothesis, we performed in vitro mechanical tests on abdominal aorta, ascending aorta, and left common carotid artery from ELN(+/-) and wild-type (C57BL/6J) mice. We compared the circumferential and longitudinal stress-stretch relationships and residual strains. The circumferential stress-stretch relationship is similar between genotypes and changes <3% with longitudinal stretch at lengths within 10% of the in vivo value. At mean arterial pressure, the circumferential stress in the ascending aorta is higher in ELN(+/-) than in wild type. Although arterial pressures are higher, the increased number of elastic lamellae in ELN(+/-) arteries results in similar tension/lamellae compared with wild type. The longitudinal stress-stretch relationship is similar between genotypes for most arteries. Compared with wild type, the in vivo longitudinal stretch is lower in ELN(+/-) abdominal and carotid arteries and the circumferential residual strain is higher in ELN(+/-) ascending aorta. The increased circumferential residual strain brings the transmural strain distribution in ELN(+/-) ascending aorta close to wild-type values. The mechanical behavior of ELN(+/-) arteries is likely due to the reduced elastin content combined with adaptive remodeling during vascular development.
主动脉瓣上狭窄(SVAS)与弹性蛋白减少和动脉力学改变有关。弹性蛋白基因单缺失(ELN(+/-))的小鼠是SVAS的模型。先前的研究表明,这些小鼠的弹性蛋白单倍体不足会导致高血压、动脉顺应性降低和动脉壁结构改变。尽管存在这些差异,但ELN(+/-)小鼠的寿命正常,这表明动脉会进行重塑并适应弹性蛋白数量的减少。为了验证这一假设,我们对ELN(+/-)和野生型(C57BL/6J)小鼠的腹主动脉、升主动脉和左颈总动脉进行了体外力学测试。我们比较了周向和纵向应力-应变关系以及残余应变。不同基因型之间的周向应力-应变关系相似,在体内值的10%范围内的长度下,纵向拉伸时变化<3%。在平均动脉压下,ELN(+/-)小鼠升主动脉的周向应力高于野生型。尽管动脉压较高,但ELN(+/-)动脉中弹性板数量的增加导致与野生型相比,单位弹性板的张力相似。大多数动脉不同基因型之间的纵向应力-应变关系相似。与野生型相比,ELN(+/-)小鼠腹主动脉和颈动脉的体内纵向拉伸较低,而ELN(+/-)升主动脉的周向残余应变较高。周向残余应变的增加使ELN(+/-)升主动脉的跨壁应变分布接近野生型值。ELN(+/-)动脉的力学行为可能是由于弹性蛋白含量减少以及血管发育过程中的适应性重塑所致。