Kailash Keshav A, Hawes Jie Z, Cocciolone Austin J, Bersi Matthew R, Mecham Robert P, Wagenseil Jessica E
Biomedical Engineering, Washington University, St. Louis, MO 63130.
Mechanical Engineering and Materials Science, Washington University, St. Louis, MO 63130.
J Biomech Eng. 2024 Mar 1;146(5). doi: 10.1115/1.4063272.
Arterial stiffening occurs during natural aging, is associated with an increased risk of adverse cardiovascular events, and can follow different timelines in males and females. One mechanism of arterial stiffening includes remodeling of the extracellular matrix (ECM), which alters the wall material properties. We used elastin haploinsufficient (Eln+/-) and wildtype (Eln+/+) mice to investigate how material properties of two different arteries (ascending aorta and carotid artery) change with age, sex, and ECM composition. We used a constitutive model by Dong and Sun that is based on the Holzapfel-Gasser-Ogden (HGO) type, but does not require a discrete number of fibrous ECM families and allows varied deformation coupling. We find that the amount of deformation coupling for the best fit model depends on the artery type. We also find that remodeling to maintain homeostatic (i.e., young, wildtype) values of biomechanical parameters with age, sex, and ECM composition depends on the artery type, with ascending aorta being more adaptable than carotid artery. Fitted material constants indicate sex-dependent remodeling that may be important for determining the time course of arterial stiffening in males and females. We correlated fitted material constants with ECM composition measured by biochemical (ascending aorta) or histological (carotid artery) methods. We show significant correlations between ECM composition and material parameters for the mean values for each group, with biochemical measurements correlating more strongly than histological measurements. Understanding how arterial stiffening depends on age, sex, ECM composition, and artery type may help design effective, personalized clinical treatment strategies.
动脉僵硬度在自然衰老过程中会增加,与心血管不良事件风险的上升相关,并且在男性和女性中可能遵循不同的时间进程。动脉僵硬度增加的一种机制包括细胞外基质(ECM)的重塑,这会改变血管壁的材料特性。我们使用弹性蛋白单倍体不足(Eln+/-)和野生型(Eln+/+)小鼠来研究两条不同动脉(升主动脉和颈动脉)的材料特性如何随年龄、性别和ECM组成而变化。我们采用了Dong和Sun提出的本构模型,该模型基于Holzapfel-Gasser-Ogden(HGO)类型,但不需要离散数量的纤维状ECM家族,并且允许不同的变形耦合。我们发现,最佳拟合模型的变形耦合量取决于动脉类型。我们还发现,随着年龄、性别和ECM组成的变化,为维持生物力学参数的稳态(即年轻、野生型)值而进行的重塑取决于动脉类型,升主动脉比颈动脉更具适应性。拟合得到的材料常数表明存在性别依赖性重塑,这可能对于确定男性和女性动脉僵硬度增加的时间进程很重要。我们将拟合得到的材料常数与通过生化方法(升主动脉)或组织学方法(颈动脉)测量的ECM组成进行了关联。我们显示,每组平均值的ECM组成与材料参数之间存在显著相关性,生化测量的相关性比组织学测量更强。了解动脉僵硬度如何取决于年龄、性别、ECM组成和动脉类型,可能有助于设计有效的个性化临床治疗策略。