Suppr超能文献

探究带负电荷的氨基酸残基在骨骼肌兰尼碱受体离子通透中的作用。

Probing the role of negatively charged amino acid residues in ion permeation of skeletal muscle ryanodine receptor.

作者信息

Wang Ying, Xu Le, Pasek Daniel A, Gillespie Dirk, Meissner Gerhard

机构信息

Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina 27599-7260, USA.

出版信息

Biophys J. 2005 Jul;89(1):256-65. doi: 10.1529/biophysj.104.056002. Epub 2005 Apr 29.

Abstract

Sequence comparison suggests that the ryanodine receptors (RyRs) have pore architecture similar to that of the bacterial K+ channel KcsA. The lumenal loop linking the two most C-terminal transmembrane spanning segments in the RyRs has a predicted pore helix and an amino acid motif (GGGIG) similar to the selectivity filter (TVGYG) of KcsA identified by x-ray analysis. The RyRs have many negatively charged amino acid residues in the two regions linking the GGGIG motif and predicted pore helix with the two most C-terminal transmembrane spanning segments. We tested the role of these residues by generating single-site mutants, focusing on amino acid residues conserved among the mammalian RyRs. Replacement of two acidic residues immediately after the GGGIG motif in skeletal muscle ryanodine receptor (RyR1-D4899 and -E4900) with asparagine and glutamine profoundly affected ion permeation and selectivity. By comparison, mutagenesis of aspartate and glutamate residues in the putative linker regions showed a K+ conductance and selectivity for Ca2+ compared to K+ (P(Ca)/P(K)) close to wild-type. The results show that the negatively charged carboxyl oxygens of D4899 and E4900 side chains are major determinants of RyR ion conductance and selectivity.

摘要

序列比较表明,兰尼碱受体(RyRs)的孔道结构与细菌钾通道KcsA相似。连接RyRs中两个最C端跨膜片段的腔内环具有预测的孔螺旋和与通过X射线分析确定的KcsA的选择性过滤器(TVGYG)相似的氨基酸基序(GGGIG)。在将GGGIG基序和预测的孔螺旋与两个最C端跨膜片段连接起来的两个区域中,RyRs有许多带负电荷的氨基酸残基。我们通过生成单点突变体来测试这些残基的作用,重点关注哺乳动物RyRs中保守的氨基酸残基。将骨骼肌兰尼碱受体(RyR1-D4899和-E4900)中GGGIG基序之后的两个酸性残基替换为天冬酰胺和谷氨酰胺,对离子渗透和选择性产生了深远影响。相比之下,对假定连接区域中天冬氨酸和谷氨酸残基进行诱变后,与野生型相比,显示出对Ca2+相对于K+的K+电导率和选择性(P(Ca)/P(K))。结果表明,D4899和E4900侧链带负电荷的羧基氧是RyR离子电导率和选择性的主要决定因素。

相似文献

1
Probing the role of negatively charged amino acid residues in ion permeation of skeletal muscle ryanodine receptor.
Biophys J. 2005 Jul;89(1):256-65. doi: 10.1529/biophysj.104.056002. Epub 2005 Apr 29.
2
Two rings of negative charges in the cytosolic vestibule of type-1 ryanodine receptor modulate ion fluxes.
Biophys J. 2006 Jan 15;90(2):443-53. doi: 10.1529/biophysj.105.072538. Epub 2005 Oct 20.
4
Negatively charged amino acids within the intraluminal loop of ryanodine receptor are involved in the interaction with triadin.
J Biol Chem. 2004 Feb 20;279(8):6994-7000. doi: 10.1074/jbc.M312446200. Epub 2003 Nov 24.
6
Mutational analysis of putative calcium binding motifs within the skeletal ryanodine receptor isoform, RyR1.
J Biol Chem. 2004 Dec 17;279(51):53028-35. doi: 10.1074/jbc.M411136200. Epub 2004 Oct 6.
7
Channel Gating Dependence on Pore Lining Helix Glycine Residues in Skeletal Muscle Ryanodine Receptor.
J Biol Chem. 2015 Jul 10;290(28):17535-45. doi: 10.1074/jbc.M115.659672. Epub 2015 May 21.

引用本文的文献

1
Molecular Determinants of Mg-Mediated Inhibition in RyR1: Insights from Computational Approaches.
ACS Omega. 2025 Jul 7;10(28):30757-30772. doi: 10.1021/acsomega.5c03018. eCollection 2025 Jul 22.
2
Eu detects two functionally distinct luminal Ca binding sites in ryanodine receptors.
Biophys J. 2023 Sep 5;122(17):3516-3531. doi: 10.1016/j.bpj.2023.07.029. Epub 2023 Aug 2.
3
Binding of the erlin1/2 complex to the third intralumenal loop of IPR1 triggers its ubiquitin-proteasomal degradation.
J Biol Chem. 2022 Jun;298(6):102026. doi: 10.1016/j.jbc.2022.102026. Epub 2022 May 11.
5
6
The Ca permeation mechanism of the ryanodine receptor revealed by a multi-site ion model.
Nat Commun. 2020 Feb 17;11(1):922. doi: 10.1038/s41467-020-14573-w.
9
The structural basis of ryanodine receptor ion channel function.
J Gen Physiol. 2017 Dec 4;149(12):1065-1089. doi: 10.1085/jgp.201711878. Epub 2017 Nov 9.
10
Ion-pulling simulations provide insights into the mechanisms of channel opening of the skeletal muscle ryanodine receptor.
J Biol Chem. 2017 Aug 4;292(31):12947-12958. doi: 10.1074/jbc.M116.760199. Epub 2017 Jun 5.

本文引用的文献

1
A model of the putative pore region of the cardiac ryanodine receptor channel.
Biophys J. 2004 Oct;87(4):2335-51. doi: 10.1529/biophysj.104.044180.
2
Negatively charged amino acids within the intraluminal loop of ryanodine receptor are involved in the interaction with triadin.
J Biol Chem. 2004 Feb 20;279(8):6994-7000. doi: 10.1074/jbc.M312446200. Epub 2003 Nov 24.
3
Potassium channels.
FEBS Lett. 2003 Nov 27;555(1):62-5. doi: 10.1016/s0014-5793(03)01104-9.
4
Characterization of recombinant skeletal muscle (Ser-2843) and cardiac muscle (Ser-2809) ryanodine receptor phosphorylation mutants.
J Biol Chem. 2003 Dec 19;278(51):51693-702. doi: 10.1074/jbc.M310406200. Epub 2003 Oct 7.
5
Topology of the Ca2+ release channel of skeletal muscle sarcoplasmic reticulum (RyR1).
Proc Natl Acad Sci U S A. 2002 Dec 24;99(26):16725-30. doi: 10.1073/pnas.012688999. Epub 2002 Dec 16.
6
Regulation of mammalian ryanodine receptors.
Front Biosci. 2002 Nov 1;7:d2072-80. doi: 10.2741/A899.
7
Physical descriptions of experimental selectivity measurements in ion channels.
Eur Biophys J. 2002 Oct;31(6):454-66. doi: 10.1007/s00249-002-0239-x. Epub 2002 Jul 16.
8
Ryanodine receptor calcium release channels.
Physiol Rev. 2002 Oct;82(4):893-922. doi: 10.1152/physrev.00013.2002.
9
Altered ryanodine receptor function in central core disease: leaky or uncoupled Ca(2+) release channels?
Trends Cardiovasc Med. 2002 Jul;12(5):189-97. doi: 10.1016/s1050-1738(02)00163-9.
10
Three-dimensional reconstruction of ryanodine receptors.
Front Biosci. 2002 Jun 1;7:d1464-74. doi: 10.2741/A853.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验