Suppr超能文献

肺炎克雷伯菌对补体介导杀伤的耐药机制。

Mechanisms of Klebsiella pneumoniae resistance to complement-mediated killing.

作者信息

Merino S, Camprubí S, Albertí S, Benedí V J, Tomás J M

机构信息

Departamento de Microbiología, Universidad de Barcelona, Spain.

出版信息

Infect Immun. 1992 Jun;60(6):2529-35. doi: 10.1128/iai.60.6.2529-2535.1992.

Abstract

The different mechanisms of Klebsiella pneumoniae resistance to complement-mediated killing were investigated by using different strains and isogenic mutants previously characterized for their surface components. We found that strains from serotypes whose K antigen masks the lipopolysaccharide (LPS) molecules (such as serotypes K1, K10, and K16) fail to activate complement, while strains with smooth LPS exposed at the cell surface (with or without K antigen) activate complement but are resistant to complement-mediated killing. The reasons for this resistance are that C3b binds far from the cell membrane and that the lytic final complex C5b-9 (membrane attack complex) is not formed. Isogenic rough mutants (K+ or K-) are serum sensitive because they bind C3b close to the cell membrane and the lytic complex (C5b-9) is formed.

摘要

通过使用先前已对其表面成分进行表征的不同菌株和同基因突变体,研究了肺炎克雷伯菌对补体介导杀伤的不同抗性机制。我们发现,来自K抗原掩盖脂多糖(LPS)分子的血清型的菌株(如血清型K1、K10和K16)无法激活补体,而细胞表面暴露有光滑LPS的菌株(无论有无K抗原)可激活补体,但对补体介导的杀伤具有抗性。这种抗性的原因是C3b在远离细胞膜的位置结合,且不会形成溶解性终末复合物C5b-9(膜攻击复合物)。同基因粗糙突变体(K+或K-)对血清敏感,因为它们在靠近细胞膜的位置结合C3b并形成溶解复合物(C5b-9)。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/00e8/257192/e33ab8b9275b/iai00030-0399-a.jpg

相似文献

1
Mechanisms of Klebsiella pneumoniae resistance to complement-mediated killing.
Infect Immun. 1992 Jun;60(6):2529-35. doi: 10.1128/iai.60.6.2529-2535.1992.
2
Aeromonas salmonicida resistance to complement-mediated killing.
Infect Immun. 1994 Dec;62(12):5483-90. doi: 10.1128/iai.62.12.5483-5490.1994.
3
Effect of growth temperature on complement-mediated killing of mesophilic Aeromonas spp. serotype O:34.
FEMS Microbiol Lett. 1994 May 1;118(1-2):163-6. doi: 10.1111/j.1574-6968.1994.tb06820.x.
4
Analysis of complement C3 deposition and degradation on Klebsiella pneumoniae.
Infect Immun. 1996 Nov;64(11):4726-32. doi: 10.1128/iai.64.11.4726-4732.1996.
5
The role of lipopolysaccharide in complement-killing of Aeromonas hydrophila strains of serotype O:34.
J Gen Microbiol. 1991 Jul;137(7):1583-90. doi: 10.1099/00221287-137-7-1583.
7
Klebsiella LPS O1-antigen prevents complement-mediated killing by inhibiting C9 polymerization.
Sci Rep. 2024 Sep 5;14(1):20701. doi: 10.1038/s41598-024-71487-z.
8
Complement mediated Klebsiella pneumoniae capsule changes.
Microbes Infect. 2020 Jan-Feb;22(1):19-30. doi: 10.1016/j.micinf.2019.08.003. Epub 2019 Aug 29.
9
Mesophilic Aeromonas sp. serogroup O:11 resistance to complement-mediated killing.
Infect Immun. 1996 Dec;64(12):5302-9. doi: 10.1128/iai.64.12.5302-5309.1996.
10
Role of lipopolysaccharide and complement in susceptibility of Klebsiella pneumoniae to nonimmune serum.
Infect Immun. 1987 Nov;55(11):2741-6. doi: 10.1128/iai.55.11.2741-2746.1987.

引用本文的文献

1
LPS O-antigen polysaccharide length impacts outer membrane permeability of enteric gram-negative bacteria.
bioRxiv. 2025 Aug 15:2025.08.14.670410. doi: 10.1101/2025.08.14.670410.
3
Unveiling the research advances of sepsis: pathogenesis, precise intervention and clinical perspective.
Int J Surg. 2025 Jun 23;111(9):6260-89. doi: 10.1097/JS9.0000000000002668.
4
The development of functional opsonophagocytic assays to evaluate antibody responses to capsular antigens.
mSphere. 2025 Jul 29;10(7):e0017625. doi: 10.1128/msphere.00176-25. Epub 2025 Jun 12.
5
Hypervirulent : Insights into Virulence, Antibiotic Resistance, and Fight Strategies Against a Superbug.
Pharmaceuticals (Basel). 2025 May 15;18(5):724. doi: 10.3390/ph18050724.
6
Phage therapy for Klebsiella pneumoniae: Understanding bacteria-phage interactions for therapeutic innovations.
PLoS Pathog. 2025 Apr 8;21(4):e1012971. doi: 10.1371/journal.ppat.1012971. eCollection 2025 Apr.
7
evolution in the gut leads to spontaneous capsule loss and decreased virulence potential.
mBio. 2025 May 14;16(5):e0236224. doi: 10.1128/mbio.02362-24. Epub 2025 Mar 31.
8
Insights into the roles of macrophages in Klebsiella pneumoniae infections: a comprehensive review.
Cell Mol Biol Lett. 2025 Mar 26;30(1):34. doi: 10.1186/s11658-025-00717-7.
9
O-antigen polysaccharides in : structures and molecular basis for antigenic diversity.
Microbiol Mol Biol Rev. 2025 Jun 25;89(2):e0009023. doi: 10.1128/mmbr.00090-23. Epub 2025 Mar 21.

本文引用的文献

1
Differential complement resistance mediates virulence of Haemophilus influenzae type b.
Infect Immun. 1982 Jan;35(1):95-104. doi: 10.1128/iai.35.1.95-104.1982.
2
Serum sensitivity of a Pseudomonas aeruginosa mucoid strain.
Infect Immun. 1984 Sep;45(3):748-55. doi: 10.1128/iai.45.3.748-755.1984.
3
Serum sensitivity of Neisseria gonorrhoeae: the role of lipopolysaccharide.
J Infect Dis. 1984 Feb;149(2):175-83. doi: 10.1093/infdis/149.2.175.
4
Complement and bacteria: chemistry and biology in host defense.
Annu Rev Immunol. 1984;2:461-91. doi: 10.1146/annurev.iy.02.040184.002333.
6
Bactericidal and bacteriolytic activity of serum against gram-negative bacteria.
Microbiol Rev. 1983 Mar;47(1):46-83. doi: 10.1128/mr.47.1.46-83.1983.
9
A sensitive silver stain for detecting lipopolysaccharides in polyacrylamide gels.
Anal Biochem. 1982 Jan 1;119(1):115-9. doi: 10.1016/0003-2697(82)90673-x.
10
Cleavage of structural proteins during the assembly of the head of bacteriophage T4.
Nature. 1970 Aug 15;227(5259):680-5. doi: 10.1038/227680a0.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验