Cottaris Nicolas P, Elfar Sylvia D
Department of Ophthalmology, Ligon Research Center of Vision, Kresge Eye Institute, Wayne State University School of Medicine, Detroit, MI 48201, USA.
J Neural Eng. 2005 Mar;2(1):S74-90. doi: 10.1088/1741-2560/2/1/010. Epub 2005 Feb 22.
We considered the problem of determining how the retinal network may interact with electrical epiretinal stimulation in shaping the spike trains of ON and OFF ganglion cells, and thus the synaptic input to first-stage cortical neurons. To do so, we developed a biophysical model of the retinal network with nine stacked neuronal mosaics. Here, we describe the model's behavior under (i) electrical stimulation of a retina with complete cone photoreceptor loss, but an otherwise intact circuitry and (ii) electrical stimulation of a fully-functional retina. Our results show that electrical stimulation alone results in indiscriminate excitation of ON and OFF ganglion cells and a patchy input to the cortex with islands of excitation among regions of no net excitation. Activation of the retinal network biases the excitation of ON relative to OFF ganglion cells, and in addition, gradually interpolates and focuses the initial, patchy synaptic input to the cortex. As stimulation level increases, the cortical input spreads beyond the area occupied by the electrode contact. Further, at very strong stimulation levels, ganglion cell responses begin to saturate, resulting in a significant distortion in the spatial profile of the cortical input. These findings occur in both the normal and the degenerated retina simulations, but the normal retina exhibits a tighter spatiotemporal response. The complex spatiotemporal dynamics of the prosthetic input to the cortex that are revealed by our model should be addressed by prosthetic image encoders and by studies that simulate prosthetic vision.
我们思考了一个问题,即视网膜网络如何与视网膜表面电刺激相互作用,从而塑造ON和OFF神经节细胞的脉冲序列,进而影响向初级皮层神经元的突触输入。为此,我们构建了一个具有九个堆叠神经元镶嵌结构的视网膜网络生物物理模型。在此,我们描述该模型在以下两种情况下的行为:(i)对完全丧失视锥光感受器但其他电路完整的视网膜进行电刺激;(ii)对功能完全正常的视网膜进行电刺激。我们的结果表明,仅电刺激会导致ON和OFF神经节细胞的无差别兴奋,并向皮层提供斑块状输入,在无净兴奋区域中存在兴奋岛。视网膜网络的激活使ON神经节细胞相对于OFF神经节细胞的兴奋产生偏差,此外,还会逐渐内插并聚焦最初向皮层的斑块状突触输入。随着刺激水平的增加,皮层输入会扩展到电极接触所占据区域之外。此外,在非常强的刺激水平下,神经节细胞的反应开始饱和,导致皮层输入的空间分布出现显著扭曲。这些发现同时出现在正常视网膜和退化视网膜模拟中,但正常视网膜表现出更紧密的时空反应。我们的模型所揭示的皮层假体输入的复杂时空动态,应由假体图像编码器以及模拟假体视觉的研究加以解决。