Peti-Peterdi János
Department of Physiology and Biophysics, Zilkha Neurogenetic Institute, Keck School of Medicine, University of California, Los Angeles, CA 90089-2821, USA.
Am J Physiol Renal Physiol. 2005 Jun;288(6):F1079-83. doi: 10.1152/ajprenal.00385.2004.
The highly inhomogeneous and light-scattering structure of living renal tissue makes the application of conventional imaging techniques more difficult compared with other parenchymal organs. On the other hand, key physiological processes of the kidney, such as regulation of glomerular filtration, hemodynamics, concentration, and dilution, involve complex interactions between multiple cell types and otherwise inaccessible structures that necessitate visual approaches. An ideal solution is multiphoton excitation fluorescence microscopy, a state-of-the-art imaging technique superior for deep optical sectioning of living tissue samples. Here, we review the basics and advantages of multiphoton microscopy and provide examples for its application in renal physiology using dissected cortical and medullary tissues in vitro. In combination with microperfusion techniques, the major functions of the juxtaglomerular apparatus, tubuloglomerular feedback and renin release, can be studied with high spatial and temporal resolution. Salt-dependent changes in macula densa cell volume, vasoconstriction of the afferent arteriole, and activity of an intraglomerular precapillary sphincter composed of renin granular cells are visualized in real time. Release and tissue activity of renin can be studied on the individual granule level. Imaging of the living inner medulla shows how interstitial cells interconnect cells of the vasa recta, loop of Henle, and collecting duct. In summary, multiphoton microscopy is an exciting new optical sectioning technique that has great potential for numerous future developments and is ideal for applications that require deep optical sectioning of living tissue samples.
与其他实质器官相比,活体肾组织高度不均匀且具有光散射结构,这使得传统成像技术的应用更加困难。另一方面,肾脏的关键生理过程,如肾小球滤过、血流动力学、浓缩和稀释的调节,涉及多种细胞类型之间复杂的相互作用以及其他难以触及的结构,这就需要可视化方法。理想的解决方案是多光子激发荧光显微镜,这是一种先进的成像技术,在对活体组织样本进行深度光学切片方面具有优势。在这里,我们回顾多光子显微镜的基本原理和优势,并提供其在肾生理学中的应用示例,这些示例使用体外解剖的皮质和髓质组织。结合微灌注技术,可以以高空间和时间分辨率研究球旁器的主要功能、肾小管-肾小球反馈和肾素释放。实时观察致密斑细胞体积的盐依赖性变化、入球小动脉的血管收缩以及由肾素颗粒细胞组成的肾小球内毛细血管前括约肌的活动。可以在单个颗粒水平上研究肾素的释放和组织活性。对活体肾内髓质的成像显示了间质细胞如何连接直小血管、髓袢和集合管的细胞。总之,多光子显微镜是一种令人兴奋的新型光学切片技术,具有巨大的未来发展潜力,非常适合需要对活体组织样本进行深度光学切片的应用。