Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, California.
Department of Medicine, Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, California.
Am J Physiol Renal Physiol. 2021 Dec 1;321(6):F689-F704. doi: 10.1152/ajprenal.00222.2021. Epub 2021 Oct 25.
Macula densa (MD) cells, a chief sensory cell type in the nephron, are endowed with unique microanatomic features including a high density of protein synthetic organelles and secretory vesicles in basal cell processes ("maculapodia") that suggest a so far unknown high rate of MD protein synthesis. This study aimed to explore the rate and regulation of MD protein synthesis and their effects on glomerular function using novel transgenic mouse models, newly established fluorescence cell biology techniques, and intravital microscopy. Sox2-tdTomato kidney tissue sections and an -propargyl puromycin incorporation-based fluorescence imaging assay showed that MD cells have the highest level of protein synthesis within the kidney cortex followed by intercalated cells and podocytes. Genetic gain of function of mammalian target of rapamycin (mTOR) signaling specifically in MD cells (in MD-mTOR mice) or their physiological activation by low-salt diet resulted in further significant increases in the synthesis of MD proteins. Specifically, these included both classic and recently identified MD-specific proteins such as cyclooxygenase 2, microsomal prostaglandin E synthase 1, and pappalysin 2. Intravital imaging of the kidney using multiphoton microscopy showed significant increases in afferent and efferent arteriole and glomerular capillary diameters and blood flow in MD-mTOR mice coupled with an elevated glomerular filtration rate. The presently identified high rate of MD protein synthesis that is regulated by mTOR signaling is a novel component of the physiological activation and glomerular hemodynamic regulatory functions of MD cells that remains to be fully characterized. This study discovered the high rate of protein synthesis in macula densa (MD) cells by applying direct imaging techniques with single cell resolution. Physiological activation and mammalian target of rapamycin signaling played important regulatory roles in this process. This new feature is a novel component of the tubuloglomerular cross talk and glomerular hemodynamic regulatory functions of MD cells. Future work is needed to elucidate the nature and (patho)physiological role of the specific proteins synthesized by MD cells.
致密斑(MD)细胞是肾单位中的主要感觉细胞类型,具有独特的微观解剖特征,包括基底细胞突起(“致密斑足”)中蛋白质合成细胞器和分泌小泡的高密度,提示 MD 蛋白合成的速率未知。本研究旨在利用新型转基因小鼠模型、新建立的荧光细胞生物学技术和活体显微镜,探讨 MD 蛋白合成的速率和调节及其对肾小球功能的影响。Sox2-tdTomato 肾组织切片和基于 -propargyl 嘌呤霉素掺入的荧光成像检测显示,MD 细胞在肾脏皮质中的蛋白质合成水平最高,其次是闰细胞和足细胞。MD 细胞中哺乳动物雷帕霉素靶蛋白(mTOR)信号的遗传功能获得(在 MD-mTOR 小鼠中)或其通过低盐饮食的生理激活导致 MD 蛋白的合成进一步显著增加。具体而言,这些包括经典和最近鉴定的 MD 特异性蛋白,如环氧化酶 2、微粒体前列腺素 E 合酶 1 和 pappalysin 2。使用多光子显微镜对肾脏进行活体成像显示,MD-mTOR 小鼠的入球小动脉和出球小动脉以及肾小球毛细血管直径和血流量显著增加,同时肾小球滤过率升高。目前鉴定的 MD 细胞中由 mTOR 信号调节的高蛋白质合成率是 MD 细胞的生理激活和肾小球血流动力学调节功能的一个新组成部分,有待进一步全面描述。本研究应用具有单细胞分辨率的直接成像技术发现了 MD 细胞中蛋白质的高合成率。生理激活和哺乳动物雷帕霉素靶蛋白信号在这个过程中发挥了重要的调节作用。这个新特征是 MD 细胞的管球反馈和肾小球血流动力学调节功能的一个新组成部分。需要进一步的研究来阐明 MD 细胞合成的特定蛋白质的性质和(病理)生理作用。