Suppr超能文献

[一种基于小波变换的用于乳腺钼靶片中微钙化检测的新型感兴趣区域提取技术]

[A novel ROI extracting technique based on wavelet transform for the detection of micro-calcifications in mammograms].

作者信息

Li Shunan, Wan Baikun, Ma Zhenhe, Wang Ruiping

机构信息

Department of Biomedical Engineering, Tianjin University, Tianjin 300072, China.

出版信息

Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2005 Apr;22(2):360-2.

Abstract

In order to preprocess mammograms for diagnosing the early cases of breast cancer and improving the computational efficiency in the computer-aided detection of micro-calcifications in mammograms, we have advanced a novel processing technique for the extraction of micro-calcification region of interest (MROI). The proposed method is based on a three-step procedure: (1) the mammogram is divided into sub-images of the same size; (2) the wavelet multi-resolution method is conducted on the sub-images, and the parameters related to wavelet transform and threshold T are discussed according to rho; (3) the classification of sub-images is determined by T. It is tested with 20 mammograms and the results show that the method can achieve a true positive rate as high as 89.7% with a false positive rate as low as 2.1%.

摘要

为了对乳房X光照片进行预处理以诊断早期乳腺癌病例,并提高乳房X光照片中微钙化的计算机辅助检测的计算效率,我们提出了一种用于提取感兴趣的微钙化区域(MROI)的新型处理技术。所提出的方法基于三步程序:(1)将乳房X光照片划分为相同大小的子图像;(2)对子图像进行小波多分辨率方法,并根据rho讨论与小波变换和阈值T相关的参数;(3)由T确定子图像的分类。用20张乳房X光照片进行了测试,结果表明该方法可以实现高达89.7%的真阳性率和低至2.1%的假阳性率。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验