Suppr超能文献

一种使用轮廓波变换和非连接简化脉冲耦合神经网络检测乳腺钼靶片中微钙化簇的新方法。

A new method of detecting micro-calcification clusters in mammograms using contourlet transform and non-linking simplified PCNN.

作者信息

Guo Ya'nan, Dong Min, Yang Zhen, Gao Xiaoli, Wang Keju, Luo Chongfan, Ma Yide, Zhang Jiuwen

机构信息

School of Information Science and Engineering, Lanzhou University, Lanzhou 730000, China.

School of Information Science and Engineering, Lanzhou University, Lanzhou 730000, China.

出版信息

Comput Methods Programs Biomed. 2016 Jul;130:31-45. doi: 10.1016/j.cmpb.2016.02.019. Epub 2016 Mar 16.

Abstract

BACKGROUND AND OBJECTIVES

Mammography analysis is an effective technology for early detection of breast cancer. Micro-calcification clusters (MCs) are a vital indicator of breast cancer, so detection of MCs plays an important role in computer aided detection (CAD) system, this paper proposes a new hybrid method to improve MCs detection rate in mammograms.

METHODS

The proposed method comprises three main steps: firstly, remove label and pectoral muscle adopting the largest connected region marking and region growing method, and enhance MCs using the combination of double top-hat transform and grayscale-adjustment function; secondly, remove noise and other interference information, and retain the significant information by modifying the contourlet coefficients using nonlinear function; thirdly, we use the non-linking simplified pulse-coupled neural network to detect MCs.

RESULTS

In our work, we choose 118 mammograms including 38 mammograms with micro-calcification clusters and 80 mammograms without micro-calcification to demonstrate our algorithm separately from two open and common database including the MIAS and JSMIT; and we achieve the higher specificity of 94.7%, sensitivity of 96.3%, AUC of 97.0%, accuracy of 95.8%, MCC of 90.4%, MCC-PS of 61.3% and CEI of 53.5%, these promising results clearly demonstrate that the proposed approach outperforms the current state-of-the-art algorithms. In addition, this method is verified on the 20 mammograms from the People's Hospital of Gansu Province, the detection results reveal that our method can accurately detect the calcifications in clinical application.

CONCLUSIONS

This proposed method is simple and fast, furthermore it can achieve high detection rate, it could be considered used in CAD systems to assist the physicians for breast cancer diagnosis in the future.

摘要

背景与目的

乳腺钼靶分析是早期检测乳腺癌的有效技术。微钙化簇(MCs)是乳腺癌的重要指标,因此MCs的检测在计算机辅助检测(CAD)系统中起着重要作用,本文提出一种新的混合方法以提高乳腺钼靶片中MCs的检测率。

方法

所提出的方法包括三个主要步骤:首先,采用最大连通区域标记和区域生长方法去除标记和胸肌,并使用双顶帽变换和灰度调整函数的组合增强MCs;其次,去除噪声和其他干扰信息,并通过使用非线性函数修改轮廓波系数来保留重要信息;第三,使用非链接简化脉冲耦合神经网络检测MCs。

结果

在我们的工作中,我们从包括MIAS和JSMIT在内的两个开放且常用的数据库中分别选择118幅乳腺钼靶片,其中包括38幅有微钙化簇的乳腺钼靶片和80幅无微钙化的乳腺钼靶片来验证我们的算法;我们实现了94.7%的较高特异性、96.3%的灵敏度、97.0%的AUC、95.8%的准确率、90.4%的MCC、61.3%的MCC-PS和53.5%的CEI,这些令人鼓舞的结果清楚地表明所提出的方法优于当前最先进的算法。此外,该方法在甘肃省人民医院的20幅乳腺钼靶片上得到验证,检测结果表明我们的方法在临床应用中能够准确检测钙化。

结论

所提出的方法简单快速,而且能够实现高检测率,未来可考虑用于CAD系统以协助医生进行乳腺癌诊断。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验