Otten David M, Rubinsky Boris
Department of Mechanical Engineering, University of California at Berkeley, Berkeley, CA 94720, USA.
Physiol Meas. 2005 Aug;26(4):503-16. doi: 10.1088/0967-3334/26/4/015. Epub 2005 May 10.
The effectiveness of cryosurgery, treatment of tumors by freezing, is highly dependent on knowledge of transient freezing extent, and therefore relies heavily on real-time imaging techniques for monitoring. Electrical impedance tomography (EIT) holds much promise for this application. In cryosurgery there is a three order of magnitude change in impedance across the freezing boundary and there is a priori knowledge of the freezing origin. Furthermore, an EIT image of the tissue can be done prior to the cryosurgery. In this study, we have developed an EIT front tracking reconstruction algorithm which takes advantage of these particular attributes of cryosurgery. The method tracks the freezing interface rather than the impedance distribution in the freezing tissue. In addition to drastically reducing the number of parameters needed to define the image, the computational complexity is further reduced by using the more appropriate boundary element method (BEM) for solution to the forward problem. The front-tracking method was found to converge rapidly and accurately to a variety of simulated phantom images.
冷冻手术,即通过冷冻治疗肿瘤的有效性高度依赖于对瞬时冷冻范围的了解,因此在很大程度上依赖于用于监测的实时成像技术。电阻抗断层成像(EIT)在该应用中具有很大的前景。在冷冻手术中,冷冻边界处的阻抗会有三个数量级的变化,并且冷冻起始点是有先验知识的。此外,可以在冷冻手术之前获取组织的EIT图像。在本研究中,我们开发了一种EIT前沿跟踪重建算法,该算法利用了冷冻手术的这些特殊属性。该方法跟踪冷冻界面而非冷冻组织中的阻抗分布。除了大幅减少定义图像所需的参数数量外,通过使用更合适的边界元法(BEM)来求解正向问题,还进一步降低了计算复杂度。结果发现,前沿跟踪方法能够快速且准确地收敛到各种模拟的体模图像。