Suppr超能文献

基于分布式算法的线性滤波器的最优非线性扩展

An optimal nonlinear extension of linear filters based on distributed arithmetic.

作者信息

Akopian David, Astola Jaakko

机构信息

Electrical Engineering Department, The University of Texas at San Antonio, San Antonio, TX 78249, USA.

出版信息

IEEE Trans Image Process. 2005 May;14(5):616-23. doi: 10.1109/tip.2005.846023.

Abstract

Distributed arithmetic (DA)-based implementation of linear filters relies on the linear nature of this operation and has been suggested as a multiplication free solution. In this work, we introduce a nonlinear extension of linear filters optimizing under mean-square error criterion the memory function [(MF) multivariate Boolean function with not only binary output] which is in the core of DA based implementation. Such an extension will improve the filtering of noise which may contain non-Gaussian components without increasing the complexity of implementation. Experiments on real images have shown the superiority of the proposed filters over the optimal linear filters. Different versions of these filters are also considered for an impulsive noise removal, faster processing, and filtering using large input data windows.

摘要

基于分布式算法(DA)的线性滤波器实现依赖于该操作的线性特性,并已被提议作为一种无乘法的解决方案。在这项工作中,我们引入了线性滤波器的非线性扩展,它在均方误差准则下优化记忆函数(具有非二进制输出的多变量布尔函数),而该记忆函数是基于DA实现的核心。这种扩展将在不增加实现复杂度的情况下,改善对可能包含非高斯成分的噪声的滤波效果。对真实图像的实验表明,所提出的滤波器优于最优线性滤波器。还考虑了这些滤波器的不同版本,用于去除脉冲噪声、更快地处理以及使用大输入数据窗口进行滤波。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验