Suppr超能文献

基于任意图上向量值非线性扩散的多尺度分割

Multiscale segmentation with vector-valued nonlinear diffusions on arbitrary graphs.

作者信息

Dong Xiaogang, Pollak Ilya

机构信息

School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN 47907, USA.

出版信息

IEEE Trans Image Process. 2006 Jul;15(7):1993-2005. doi: 10.1109/tip.2006.873473.

Abstract

We propose a novel family of nonlinear diffusion equations and apply it to the problem of segmentation of multivalued images. We show that this family can be viewed as an extension of stabilized inverse diffusion equations (SIDEs) which were proposed for restoration, enhancement, and segmentation of scalar-valued signals and images in [39]. Our new diffusion equations can process vector-valued images defined on arbitrary graphs which makes them well suited for segmentation. In addition, we introduce novel ways of utilizing the shape information luring the diffusion process. We demonstrate the effectiveness of our methods on a large number of segmentation tasks.

摘要

我们提出了一类新的非线性扩散方程,并将其应用于多值图像分割问题。我们表明,这类方程可被视为稳定逆扩散方程(SIDEs)的扩展,后者是在文献[39]中为标量值信号和图像的恢复、增强及分割而提出的。我们的新扩散方程能够处理定义在任意图上的向量值图像,这使其非常适合用于分割。此外,我们引入了利用形状信息引导扩散过程的新方法。我们在大量分割任务中证明了我们方法的有效性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验