Suppr超能文献

Sec17p和同型寡聚体蛋白分选复合物(HOPS)在不同的可溶性N-乙基马来酰胺敏感因子附着蛋白受体(SNARE)复合物中,介导SNARE复合物的破坏或组装以实现融合。

Sec17p and HOPS, in distinct SNARE complexes, mediate SNARE complex disruption or assembly for fusion.

作者信息

Collins Kevin M, Thorngren Naomi L, Fratti Rutilio A, Wickner William T

机构信息

Department of Biochemistry, Dartmouth Medical School, Hanover, NH 03755, USA.

出版信息

EMBO J. 2005 May 18;24(10):1775-86. doi: 10.1038/sj.emboj.7600658. Epub 2005 May 5.

Abstract

SNARE functions during membrane docking and fusion are regulated by Sec1/Munc18 (SM) chaperones and Rab/Ypt GTPase effectors. These functions for yeast vacuole fusion are combined in the six-subunit HOPS complex. HOPS facilitates Ypt7p nucleotide exchange, is a Ypt7p effector, and contains an SM protein. We have dissected the associations and requirements for HOPS, Ypt7p, and Sec17/18p during SNARE complex assembly. Vacuole SNARE complexes bind either Sec17p or the HOPS complex, but not both. Sec17p and its co-chaperone Sec18p disassemble SNARE complexes. Ypt7p regulates the reassembly of unpaired SNAREs with each other and with HOPS, forming HOPS.SNARE complexes prior to fusion. After HOPS.SNARE assembly, lipid rearrangements are still required for vacuole content mixing. Thus, Sec17p and HOPS have mutually exclusive interactions with vacuole SNAREs to mediate disruption of SNARE complexes or their assembly for docking and fusion. Sec17p may displace HOPS from SNAREs to permit subsequent rounds of fusion.

摘要

SNARE在膜对接和融合过程中的功能受Sec1/Munc18(SM)分子伴侣和Rab/Ypt GTP酶效应器调控。酵母液泡融合的这些功能由六亚基HOPS复合体整合。HOPS促进Ypt7p核苷酸交换,是Ypt7p效应器,并包含一个SM蛋白。我们剖析了SNARE复合体组装过程中HOPS、Ypt7p和Sec17/18p之间的关联及需求。液泡SNARE复合体要么结合Sec17p,要么结合HOPS复合体,但不会同时结合两者。Sec17p及其共分子伴侣Sec18p会拆解SNARE复合体。Ypt7p调节未配对SNARE之间以及它们与HOPS之间的重新组装,在融合前形成HOPS.SNARE复合体。HOPS.SNARE组装后,液泡内容物混合仍需要脂质重排。因此,Sec17p和HOPS与液泡SNARE具有相互排斥的相互作用,以介导SNARE复合体的拆解或组装,用于对接和融合。Sec17p可能会将HOPS从SNARE上置换下来,以允许后续轮次的融合。

相似文献

1
Sec17p and HOPS, in distinct SNARE complexes, mediate SNARE complex disruption or assembly for fusion.
EMBO J. 2005 May 18;24(10):1775-86. doi: 10.1038/sj.emboj.7600658. Epub 2005 May 5.
2
Trans-SNARE complex assembly and yeast vacuole membrane fusion.
Proc Natl Acad Sci U S A. 2007 May 22;104(21):8755-60. doi: 10.1073/pnas.0702290104. Epub 2007 May 14.
3
A soluble SNARE drives rapid docking, bypassing ATP and Sec17/18p for vacuole fusion.
EMBO J. 2004 Jul 21;23(14):2765-76. doi: 10.1038/sj.emboj.7600286. Epub 2004 Jul 8.
5
HOPS prevents the disassembly of trans-SNARE complexes by Sec17p/Sec18p during membrane fusion.
EMBO J. 2010 Jun 16;29(12):1948-60. doi: 10.1038/emboj.2010.97. Epub 2010 May 14.
6
Homotypic vacuolar fusion mediated by t- and v-SNAREs.
Nature. 1997 May 8;387(6629):199-202. doi: 10.1038/387199a0.
7
HOPS initiates vacuole docking by tethering membranes before trans-SNARE complex assembly.
Mol Biol Cell. 2010 Jul 1;21(13):2297-305. doi: 10.1091/mbc.e10-01-0044. Epub 2010 May 12.
9
Reconstituted membrane fusion requires regulatory lipids, SNAREs and synergistic SNARE chaperones.
EMBO J. 2008 Aug 6;27(15):2031-42. doi: 10.1038/emboj.2008.139. Epub 2008 Jul 24.
10
Minimal membrane docking requirements revealed by reconstitution of Rab GTPase-dependent membrane fusion from purified components.
Proc Natl Acad Sci U S A. 2009 Oct 20;106(42):17626-33. doi: 10.1073/pnas.0903801106. Epub 2009 Oct 13.

引用本文的文献

3
After their membrane assembly, Sec18 (NSF) and Sec17 (SNAP) promote membrane fusion.
Mol Biol Cell. 2024 Dec 1;35(12):ar150. doi: 10.1091/mbc.E24-10-0439. Epub 2024 Oct 30.
5
MARCKS Effector Domain, a reversible lipid ligand, illuminates late stages of membrane fusion.
Mol Biol Cell. 2023 Nov 1;34(12):ar123. doi: 10.1091/mbc.E23-06-0228. Epub 2023 Sep 6.
6
SNARE Proteins in Synaptic Vesicle Fusion.
Adv Neurobiol. 2023;33:63-118. doi: 10.1007/978-3-031-34229-5_4.
7
Efficient fusion requires a membrane anchor on the vacuolar Qa-SNARE.
Mol Biol Cell. 2023 Aug 1;34(9):ar88. doi: 10.1091/mbc.E23-02-0052. Epub 2023 Jun 14.
8
PI3P regulates multiple stages of membrane fusion.
Mol Biol Cell. 2023 Mar 1;34(3):ar17. doi: 10.1091/mbc.E22-10-0486. Epub 2023 Feb 3.
9
Sec18 supports membrane fusion by promoting Sec17 membrane association.
Mol Biol Cell. 2022 Nov 1;33(13):ar127. doi: 10.1091/mbc.E22-07-0274. Epub 2022 Sep 14.
10
Neuronal SNARE complex assembly guided by Munc18-1 and Munc13-1.
FEBS Open Bio. 2022 Nov;12(11):1939-1957. doi: 10.1002/2211-5463.13394. Epub 2022 Mar 22.

本文引用的文献

2
Sec1p directly stimulates SNARE-mediated membrane fusion in vitro.
J Cell Biol. 2004 Oct 11;167(1):75-85. doi: 10.1083/jcb.200405018. Epub 2004 Oct 4.
3
Resolution of organelle docking and fusion kinetics in a cell-free assay.
Proc Natl Acad Sci U S A. 2004 Aug 10;101(32):11548-53. doi: 10.1073/pnas.0404583101. Epub 2004 Jul 30.
4
A soluble SNARE drives rapid docking, bypassing ATP and Sec17/18p for vacuole fusion.
EMBO J. 2004 Jul 21;23(14):2765-76. doi: 10.1038/sj.emboj.7600286. Epub 2004 Jul 8.
5
The Sec1/Munc18 protein, Vps33p, functions at the endosome and the vacuole of Saccharomyces cerevisiae.
Mol Biol Cell. 2004 Jun;15(6):2593-605. doi: 10.1091/mbc.e03-10-0767. Epub 2004 Mar 26.
6
Gene replacement reveals that p115/SNARE interactions are essential for Golgi biogenesis.
Proc Natl Acad Sci U S A. 2004 Feb 3;101(5):1253-6. doi: 10.1073/pnas.0306373101. Epub 2004 Jan 21.
7
Trans-SNARE interactions elicit Ca2+ efflux from the yeast vacuole lumen.
J Cell Biol. 2004 Jan 19;164(2):195-206. doi: 10.1083/jcb.200310105.
8
Mammalian late vacuole protein sorting orthologues participate in early endosomal fusion and interact with the cytoskeleton.
Mol Biol Cell. 2004 Mar;15(3):1197-210. doi: 10.1091/mbc.e03-06-0358. Epub 2003 Dec 10.
9
Yeast homotypic vacuole fusion requires the Ccz1-Mon1 complex during the tethering/docking stage.
J Cell Biol. 2003 Dec 8;163(5):973-85. doi: 10.1083/jcb.200308071.
10
Global analysis of protein localization in budding yeast.
Nature. 2003 Oct 16;425(6959):686-91. doi: 10.1038/nature02026.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验