Suppr超能文献

H662是ABC转运蛋白HlyB核苷酸结合结构域中ATP水解的关键因素。

H662 is the linchpin of ATP hydrolysis in the nucleotide-binding domain of the ABC transporter HlyB.

作者信息

Zaitseva Jelena, Jenewein Stefan, Jumpertz Thorsten, Holland I Barry, Schmitt Lutz

机构信息

Institute of Biochemistry, Biocenter, Johann-Wolfgang Goethe University Frankfurt, Frankfurt, Germany.

出版信息

EMBO J. 2005 Jun 1;24(11):1901-10. doi: 10.1038/sj.emboj.7600657. Epub 2005 May 12.

Abstract

The ABC transporter HlyB is a central element of the HlyA secretion machinery, a paradigm of Type I secretion. Here, we describe the crystal structure of the HlyB-NBD (nucleotide-binding domain) with H662 replaced by Ala in complex with ATP/Mg2+. The dimer shows a composite architecture, in which two intact ATP molecules are bound at the interface of the Walker A motif and the C-loop, provided by the two monomers. ATPase measurements confirm that H662 is essential for activity. Based on these data, we propose a model in which E631 and H662, highly conserved among ABC transporters, form a catalytic dyad. Here, H662 acts as a 'linchpin', holding together all required parts of a complicated network of interactions between ATP, water molecules, Mg2+, and amino acids both in cis and trans, necessary for intermonomer communication. Based on biochemical experiments, we discuss the hypothesis that substrate-assisted catalysis, rather than general base catalysis might operate in ABC-ATPases.

摘要

ABC转运蛋白HlyB是HlyA分泌机制的核心元件,是I型分泌的典范。在此,我们描述了H662被丙氨酸取代的HlyB核苷酸结合结构域(NBD)与ATP/Mg2+复合物的晶体结构。二聚体呈现出一种复合结构,其中两个完整的ATP分子结合在由两个单体提供的沃克A基序和C环的界面处。ATP酶测量证实H662对活性至关重要。基于这些数据,我们提出了一个模型,其中在ABC转运蛋白中高度保守的E631和H662形成一个催化二元组。在这里,H662充当“关键”,将ATP、水分子、Mg2+和氨基酸之间复杂相互作用网络的所有必需部分聚集在一起,这些相互作用对于单体间通讯是顺式和反式都必需的。基于生化实验,我们讨论了底物辅助催化而非一般碱催化可能在ABC - ATP酶中起作用的假说。

相似文献

1
H662 is the linchpin of ATP hydrolysis in the nucleotide-binding domain of the ABC transporter HlyB.
EMBO J. 2005 Jun 1;24(11):1901-10. doi: 10.1038/sj.emboj.7600657. Epub 2005 May 12.
3
H-loop histidine catalyzes ATP hydrolysis in the E. coli ABC-transporter HlyB.
Phys Chem Chem Phys. 2013 Oct 14;15(38):15811-5. doi: 10.1039/c3cp50965f. Epub 2013 Aug 16.
4
Mapping Free Energy Pathways for ATP Hydrolysis in the ABC Transporter HlyB by the String Method.
Molecules. 2018 Oct 16;23(10):2652. doi: 10.3390/molecules23102652.
6
A structural analysis of asymmetry required for catalytic activity of an ABC-ATPase domain dimer.
EMBO J. 2006 Jul 26;25(14):3432-43. doi: 10.1038/sj.emboj.7601208. Epub 2006 Jul 6.
9
Molecular insights into the mechanism of ATP-hydrolysis by the NBD of the ABC-transporter HlyB.
FEBS Lett. 2006 Feb 13;580(4):1036-41. doi: 10.1016/j.febslet.2005.11.012. Epub 2005 Nov 21.
10
Interdomain regulation of the ATPase activity of the ABC transporter haemolysin B from Escherichia coli.
Biochem J. 2016 Aug 15;473(16):2471-83. doi: 10.1042/BCJ20160154. Epub 2016 Jun 8.

引用本文的文献

1
Thermodynamic basis for CFTR activity potentiation.
Res Sq. 2025 Aug 12:rs.3.rs-7339733. doi: 10.21203/rs.3.rs-7339733/v1.
2
Structure guided functional analysis of the S. cerevisiae Mre11 complex.
Nat Commun. 2025 Aug 12;16(1):7469. doi: 10.1038/s41467-025-62583-3.
3
Mapping the Role of P-gp in Multidrug Resistance: Insights from Recent Structural Studies.
Int J Mol Sci. 2025 Apr 28;26(9):4179. doi: 10.3390/ijms26094179.
5
The Evolution of ABC Importers.
J Mol Biol. 2025 Jun 1;437(11):169082. doi: 10.1016/j.jmb.2025.169082. Epub 2025 Mar 13.
6
Structure guided functional analysis of the S. cerevisiae Mre11 complex.
Res Sq. 2024 Dec 9:rs.3.rs-5390974. doi: 10.21203/rs.3.rs-5390974/v1.
7
The C-terminal α-helix is crucial for the activity of the bacterial ABC transporter BmrA.
J Biol Chem. 2025 Feb;301(2):108098. doi: 10.1016/j.jbc.2024.108098. Epub 2024 Dec 18.
8
Magnesium enhances aurintricarboxylic acid's inhibitory action on the plasma membrane Ca-ATPase.
Sci Rep. 2024 Jun 26;14(1):14693. doi: 10.1038/s41598-024-65465-8.
10
Investigations on the substrate binding sites of hemolysin B, an ABC transporter, of a type 1 secretion system.
Front Microbiol. 2022 Dec 1;13:1055032. doi: 10.3389/fmicb.2022.1055032. eCollection 2022.

本文引用的文献

1
Processing of X-ray diffraction data collected in oscillation mode.
Methods Enzymol. 1997;276:307-26. doi: 10.1016/S0076-6879(97)76066-X.
3
Properties of P-glycoprotein with mutations in the "catalytic carboxylate" glutamate residues.
J Biol Chem. 2004 Nov 5;279(45):46518-26. doi: 10.1074/jbc.M408052200. Epub 2004 Aug 23.
4
Refinement of macromolecular structures by the maximum-likelihood method.
Acta Crystallogr D Biol Crystallogr. 1997 May 1;53(Pt 3):240-55. doi: 10.1107/S0907444996012255.
5
Use of non-crystallographic symmetry in protein structure refinement.
Acta Crystallogr D Biol Crystallogr. 1996 Jul 1;52(Pt 4):842-57. doi: 10.1107/S0907444995016477.
6
Automated refinement of protein models.
Acta Crystallogr D Biol Crystallogr. 1993 Jan 1;49(Pt 1):129-47. doi: 10.1107/S0907444992008886.
7
The role of CAPS buffer in expanding the crystallization space of the nucleotide-binding domain of the ABC transporter haemolysin B from Escherichia coli.
Acta Crystallogr D Biol Crystallogr. 2004 Jun;60(Pt 6):1076-84. doi: 10.1107/S0907444904007437. Epub 2004 May 21.
8
The ABC transporter structure and mechanism: perspectives on recent research.
Cell Mol Life Sci. 2004 Mar;61(6):682-99. doi: 10.1007/s00018-003-3336-9.
9
Structure of nucleotide-binding domain 1 of the cystic fibrosis transmembrane conductance regulator.
EMBO J. 2004 Jan 28;23(2):282-93. doi: 10.1038/sj.emboj.7600040. Epub 2003 Dec 18.
10
Formation of the productive ATP-Mg2+-bound dimer of GlcV, an ABC-ATPase from Sulfolobus solfataricus.
J Mol Biol. 2003 Nov 21;334(2):255-67. doi: 10.1016/j.jmb.2003.08.065.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验