Martynoga Ben, Morrison Harris, Price David J, Mason John O
Genes and Development Group, Biomedical Sciences, George Square, The University of Edinburgh, Edinburgh EH8 9XD, UK.
Dev Biol. 2005 Jul 1;283(1):113-27. doi: 10.1016/j.ydbio.2005.04.005.
Null mutation of the Foxg1 gene causes hypoplasia of the mouse telencephalon and loss of ventral telencephalic structures. We show that a crucial early requirement for Foxg1 is in the induction of ventral cell fate in the telencephalon. To study later proliferative defects, we have adapted an iododeoxyuridine and bromodeoxyuridine double labeling protocol for use in the developing embryo, which allows estimation of cell cycle kinetics in a single specimen. This technique is used to demonstrate that the cell cycle is prematurely lengthened in the Foxg1-null telencephalon. These defects are first apparent at embryonic day 10.5 (E10.5) and are most severe in the rostral telencephalon. We show that apoptosis is also reduced in the same rostral domain. These defects correspond temporally and spatially with a dramatic reduction in expression of the potent signaling molecule Fgf8. We also show that in the absence of Foxg1 an excess of neurons is produced from E11.5, depleting the progenitor pool and limiting the growth of the Foxg1(-/-) telencephalon. The increase in neurogenic division coincides with an increase in BMP signaling, as detected by immunohistochemistry for phosphorylated smad-1, -5, and -8. This study reinforces Foxg1's position as a major regulator of telencephalic neurogenesis and supports the idea that Foxg1 controls precursor proliferation via regulation of Fgf signaling and differentiation via regulation of Bmp signaling.
Foxg1基因的无效突变导致小鼠端脑发育不全以及腹侧端脑结构缺失。我们发现,Foxg1在端脑腹侧细胞命运诱导过程中存在关键的早期需求。为了研究后期的增殖缺陷,我们改进了一种用于发育中胚胎的碘脱氧尿苷和溴脱氧尿苷双重标记方案,该方案可在单个标本中估计细胞周期动力学。这项技术用于证明Foxg1基因敲除的端脑中细胞周期过早延长。这些缺陷在胚胎第10.5天(E10.5)首次显现,在端脑前部最为严重。我们发现同一前部区域的细胞凋亡也减少了。这些缺陷在时间和空间上与强效信号分子Fgf8表达的显著降低相对应。我们还表明,在缺乏Foxg1的情况下,从E11.5开始会产生过量的神经元,耗尽祖细胞池并限制Foxg1(-/-)端脑的生长。神经源性分裂的增加与BMP信号的增加同时出现,这通过对磷酸化smad-1、-5和-8的免疫组织化学检测得以证实。这项研究强化了Foxg1作为端脑神经发生主要调节因子的地位,并支持了Foxg1通过调节Fgf信号控制前体细胞增殖以及通过调节Bmp信号控制分化的观点。