Suppr超能文献

通过全内反射荧光偏振显微镜测量单个大分子的取向

Measurement of single macromolecule orientation by total internal reflection fluorescence polarization microscopy.

作者信息

Forkey Joseph N, Quinlan Margot E, Goldman Yale E

机构信息

Pennsylvania Muscle Institute and Department of Physiology, University of Pennsylvania, Philadelphia, 19104-6083, USA.

出版信息

Biophys J. 2005 Aug;89(2):1261-71. doi: 10.1529/biophysj.104.053470. Epub 2005 May 13.

Abstract

A new approach is presented for measuring the three-dimensional orientation of individual macromolecules using single molecule fluorescence polarization (SMFP) microscopy. The technique uses the unique polarizations of evanescent waves generated by total internal reflection to excite the dipole moment of individual fluorophores. To evaluate the new SMFP technique, single molecule orientation measurements from sparsely labeled F-actin are compared to ensemble-averaged orientation data from similarly prepared densely labeled F-actin. Standard deviations of the SMFP measurements taken at 40 ms time intervals indicate that the uncertainty for individual measurements of axial and azimuthal angles is approximately 10 degrees at 40 ms time resolution. Comparison with ensemble data shows there are no substantial systematic errors associated with the single molecule measurements. In addition to evaluating the technique, the data also provide a new measurement of the torsional rigidity of F-actin. These measurements support the smaller of two values of the torsional rigidity of F-actin previously reported.

摘要

本文提出了一种利用单分子荧光偏振(SMFP)显微镜测量单个大分子三维取向的新方法。该技术利用全内反射产生的倏逝波的独特偏振来激发单个荧光团的偶极矩。为了评估新的SMFP技术,将稀疏标记的F-肌动蛋白的单分子取向测量结果与类似制备的密集标记的F-肌动蛋白的系综平均取向数据进行了比较。以40毫秒时间间隔进行的SMFP测量的标准偏差表明,在40毫秒时间分辨率下,轴向和方位角的单个测量的不确定性约为10度。与系综数据的比较表明,单分子测量没有显著的系统误差。除了评估该技术外,这些数据还提供了F-肌动蛋白扭转刚度的新测量值。这些测量结果支持了先前报道的F-肌动蛋白扭转刚度两个值中较小的那个。

相似文献

1
Measurement of single macromolecule orientation by total internal reflection fluorescence polarization microscopy.
Biophys J. 2005 Aug;89(2):1261-71. doi: 10.1529/biophysj.104.053470. Epub 2005 May 13.
2
Orientation of the myosin light chain region by single molecule total internal reflection fluorescence polarization microscopy.
Biophys J. 2005 Aug;89(2):1132-42. doi: 10.1529/biophysj.104.053496. Epub 2005 May 13.
3
Real-time measurements of actin filament polymerization by total internal reflection fluorescence microscopy.
Biophys J. 2005 Feb;88(2):1387-402. doi: 10.1529/biophysj.104.047399. Epub 2004 Nov 19.
4
5
The polarized total internal reflection fluorescence microscopy (polTIRFM) twirling filament assay.
Cold Spring Harb Protoc. 2012 Jun 1;2012(6):719-21. doi: 10.1101/pdb.prot069401.
6
Nanoscale separation of molecular species based on their rotational mobility.
Opt Express. 2008 Dec 8;16(25):21093-104. doi: 10.1364/oe.16.021093.
7
The acquisition and analysis of polarized total internal reflection fluorescence microscopy (polTIRFM) data.
Cold Spring Harb Protoc. 2012 Jun 1;2012(6):722-5. doi: 10.1101/pdb.prot069419.
8
Genetically encoded orientation probes for F-actin for fluorescence polarization microscopy.
Microscopy (Oxf). 2019 Oct 9;68(5):359-368. doi: 10.1093/jmicro/dfz022.
9
Rotational motions of macro-molecules by single-molecule fluorescence microscopy.
Acc Chem Res. 2005 Jul;38(7):583-93. doi: 10.1021/ar040137k.
10
Dissection of molecular assembly dynamics by tracking orientation and position of single molecules in live cells.
Proc Natl Acad Sci U S A. 2016 Oct 18;113(42):E6352-E6361. doi: 10.1073/pnas.1607674113. Epub 2016 Sep 27.

引用本文的文献

1
Examination of conformational dynamics of AdiC transporter with fluorescence-polarization microscopy.
J Gen Physiol. 2025 May 5;157(3). doi: 10.1085/jgp.202413709. Epub 2025 Feb 20.
3
Twist response of actin filaments.
Proc Natl Acad Sci U S A. 2023 Jan 24;120(4):e2208536120. doi: 10.1073/pnas.2208536120. Epub 2023 Jan 19.
4
Through the Eyes of Creators: Observing Artificial Molecular Motors.
ACS Nanosci Au. 2022 Jun 15;2(3):140-159. doi: 10.1021/acsnanoscienceau.1c00041. Epub 2022 Jan 13.
6
Single-Molecule 3D Orientation Imaging Reveals Nanoscale Compositional Heterogeneity in Lipid Membranes.
Angew Chem Int Ed Engl. 2020 Sep 28;59(40):17572-17579. doi: 10.1002/anie.202006207. Epub 2020 Aug 20.
7
Single-molecule polarization microscopy of DNA intercalators sheds light on the structure of S-DNA.
Sci Adv. 2019 Mar 22;5(3):eaav1083. doi: 10.1126/sciadv.aav1083. eCollection 2019 Mar.
8
Dimensions and Interactions of Large T-Cell Surface Proteins.
Front Immunol. 2018 Sep 27;9:2215. doi: 10.3389/fimmu.2018.02215. eCollection 2018.
10

本文引用的文献

1
Imaging single-molecule dichroism.
Opt Lett. 1997 May 1;22(9):651-3. doi: 10.1364/ol.22.000651.
2
Rotational motions of macro-molecules by single-molecule fluorescence microscopy.
Acc Chem Res. 2005 Jul;38(7):583-93. doi: 10.1021/ar040137k.
3
Orientation of the myosin light chain region by single molecule total internal reflection fluorescence polarization microscopy.
Biophys J. 2005 Aug;89(2):1132-42. doi: 10.1529/biophysj.104.053496. Epub 2005 May 13.
4
Configuration of the two kinesin motor domains during ATP hydrolysis.
Nat Struct Biol. 2003 Oct;10(10):836-42. doi: 10.1038/nsb984. Epub 2003 Sep 14.
5
X-ray structure of a voltage-dependent K+ channel.
Nature. 2003 May 1;423(6935):33-41. doi: 10.1038/nature01580.
6
Three-dimensional structural dynamics of myosin V by single-molecule fluorescence polarization.
Nature. 2003 Mar 27;422(6930):399-404. doi: 10.1038/nature01529.
8
The open pore conformation of potassium channels.
Nature. 2002 May 30;417(6888):523-6. doi: 10.1038/417523a.
9
The gated gait of the processive molecular motor, myosin V.
Nat Cell Biol. 2002 Jan;4(1):59-65. doi: 10.1038/ncb732.
10
The crystal structure of uncomplexed actin in the ADP state.
Science. 2001 Jul 27;293(5530):708-11. doi: 10.1126/science.1059700.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验