Forkey Joseph N, Quinlan Margot E, Goldman Yale E
Pennsylvania Muscle Institute and Department of Physiology, University of Pennsylvania, Philadelphia, 19104-6083, USA.
Biophys J. 2005 Aug;89(2):1261-71. doi: 10.1529/biophysj.104.053470. Epub 2005 May 13.
A new approach is presented for measuring the three-dimensional orientation of individual macromolecules using single molecule fluorescence polarization (SMFP) microscopy. The technique uses the unique polarizations of evanescent waves generated by total internal reflection to excite the dipole moment of individual fluorophores. To evaluate the new SMFP technique, single molecule orientation measurements from sparsely labeled F-actin are compared to ensemble-averaged orientation data from similarly prepared densely labeled F-actin. Standard deviations of the SMFP measurements taken at 40 ms time intervals indicate that the uncertainty for individual measurements of axial and azimuthal angles is approximately 10 degrees at 40 ms time resolution. Comparison with ensemble data shows there are no substantial systematic errors associated with the single molecule measurements. In addition to evaluating the technique, the data also provide a new measurement of the torsional rigidity of F-actin. These measurements support the smaller of two values of the torsional rigidity of F-actin previously reported.
本文提出了一种利用单分子荧光偏振(SMFP)显微镜测量单个大分子三维取向的新方法。该技术利用全内反射产生的倏逝波的独特偏振来激发单个荧光团的偶极矩。为了评估新的SMFP技术,将稀疏标记的F-肌动蛋白的单分子取向测量结果与类似制备的密集标记的F-肌动蛋白的系综平均取向数据进行了比较。以40毫秒时间间隔进行的SMFP测量的标准偏差表明,在40毫秒时间分辨率下,轴向和方位角的单个测量的不确定性约为10度。与系综数据的比较表明,单分子测量没有显著的系统误差。除了评估该技术外,这些数据还提供了F-肌动蛋白扭转刚度的新测量值。这些测量结果支持了先前报道的F-肌动蛋白扭转刚度两个值中较小的那个。